• 7 Container With Most Water


    Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

    Note: You may not slant the container and n is at least 2.

    The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

    Example:

    Input: [1,8,6,2,5,4,8,3,7]
    Output: 49

    很快就写了一个暴力搜索的方法,不过很显然不是最优解:

    class Solution {
    public:
        int maxArea(vector<int>& height) {
            
            //
            int vol = 0;
            
            //
            if(height.size()<2) return vol;
            else;
            
            //
            for(int i=0;i<height.size();i++)
            {
                for(int j=i;j<height.size();j++)
                {
                    int curr_height = (height[i] >= height[j]) ? height[j]:height[i];
                    int curr_vol = (j-i)*curr_height;
                    
                    if(curr_vol > vol) vol = curr_vol;
                    
                }    
            }
             
            return vol;
            
        }
    };
    

    后来参考了一下这道题的简易算法,速度当真快了不少。其核心思想是,水桶所能承水的高度受到最低木板的限制,而最低木板想要实现最大容量需要最长的区间长度。在实现算法时,我们从边缘向中间逼近,利用较短的木板计算当前区间的最大容水量,并且不断迭代最短木板位置向中心靠近,由此求解最大容水量。

    class Solution {
    public:
        int maxArea(vector<int>& height) {
            
            //
            int vol = 0;
            
            //
            if(height.size()<2) return vol;
            else;
            
            //cool algorithms
            int s =0;
            int t = height.size()-1;
            
            while(s<t)
            {
                
                int curr_height = (height[s] >= height[t])? height[t]:height[s];
                int curr_vol = curr_height * (t-s);
                if(curr_vol > vol) vol = curr_vol;
                
                if(height[s]>=height[t]) t--;
                else s++;
                
            }
            
            
            
             
            return vol;
            
        }
    };
    
  • 相关阅读:
    TimeSpan的操作
    List<T>的排序和筛选
    编程中的一些概念
    SVN返回版本
    语音播报
    优化编译器的局限性
    Inline Functions 与它的形式参数和局部变量
    函数的效能 & 指向 Member Functions 的指针与其效能
    虚拟继承下 Virtual Function 的语意
    多重继承下 Virtual Function 的语意
  • 原文地址:https://www.cnblogs.com/xiaoyisun06/p/11184732.html
Copyright © 2020-2023  润新知