• 1066. Root of AVL Tree (25)


    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print ythe root of the resulting AVL tree in one line.

    Sample Input 1:

    5
    88 70 61 96 120
    

    Sample Output 1:

    70
    

    Sample Input 2:

    7
    88 70 61 96 120 90 65
    

    Sample Output 2:

    88

      1 #include<stdio.h>
      2 #include<vector>
      3 #include<algorithm>
      4 using namespace std;
      5 
      6 struct node
      7 {
      8     node(int v):left(NULL),right(NULL),high(1),val(v){}
      9     node* left,* right;
     10     int val,high;
     11 };
     12 
     13 int gethigh(node* root)
     14 {
     15     int a = 0, b = 0;
     16     if(root->left!= NULL)
     17         a = root->left->high;
     18     if(root->right!= NULL)
     19         b = root->right->high;
     20     return a > b ? a+1:b+1;
     21 }
     22 
     23 void R(node* & root)
     24 {
     25     node* tem = root->left;
     26     root->left = tem->right;
     27     tem->right = root;
     28     root->high = gethigh(root);
     29     tem->high = gethigh(tem);
     30     root = tem;
     31 }
     32 
     33 void L(node* & root)
     34 {
     35     node* tem = root->right;
     36     root->right = tem->left;
     37     tem->left = root;
     38     root->high = gethigh(root);
     39     tem->high = gethigh(tem);
     40     root = tem;
     41 }
     42 
     43 void insert(node*& root,int val)
     44 {
     45     if(root == NULL)
     46     {
     47         root = new node(val);
     48         return;
     49     }
     50 
     51     if(val < root->val)
     52     {
     53         insert(root->left,val);
     54         root->high = gethigh(root);
     55         int a = root->left == NULL ? 0 : root->left->high;
     56         int b = root->right == NULL ? 0 : root->right->high;
     57         if(a - b == 2)
     58         {
     59             int c = root->left->left == NULL ? 0:root->left->left->high;
     60             int d = root->left->right == NULL ? 0:root->left->right->high;
     61             if(c - d  == 1 )
     62             {
     63                 R(root);
     64             }
     65             else if(c - d  == -1)
     66             {
     67                 L(root->left);
     68                 R(root);
     69             }
     70         }
     71     }
     72     else
     73     {
     74         insert(root->right,val);
     75         root->high = gethigh(root);
     76         int a = root->left == NULL ? 0 : root->left->high;
     77         int b = root->right == NULL ? 0 : root->right->high;
     78         if(a - b == -2)
     79         {
     80             int c = root->right->right == NULL ? 0:root->right->right->high;
     81             int d = root->right->left == NULL ? 0:root->right->left->high;
     82             if(c - d == 1)
     83             {
     84                 L(root);
     85             }
     86             else if(c - d == -1)
     87             {
     88                 R(root->right);
     89                 L(root);
     90             }
     91         }
     92     }
     93 }
     94 
     95 int main()
     96 {
     97     int n,tem;
     98     scanf("%d",&n);
     99     node* Tree = NULL;
    100     for(int i = 0;i < n;++i)
    101     {
    102         scanf("%d",&tem);
    103         insert(Tree,tem);
    104     }
    105     printf("%d
    ",Tree->val);
    106     return 0;
    107 }
  • 相关阅读:
    软解析和硬解析
    oracle存储过程常用技巧
    jquery-1.11.1.js
    JavaScript遍历table
    JavaScript向select下拉框中添加和删除元素
    glog
    DDL引发的对象invalidation
    模拟cursor pin S wait on X
    rsync 排除目录
    JavaScript解决select下拉框中的内容太长显示不全的问题
  • 原文地址:https://www.cnblogs.com/xiaoyesoso/p/5248938.html
Copyright © 2020-2023  润新知