• 1030. Travel Plan (30)


     

    时间限制
    400 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (<=500) is the number of cities (and hence the cities are numbered from 0 to N-1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

    City1 City2 Distance Cost

    where the numbers are all integers no more than 500, and are separated by a space.

    Output Specification:

    For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

    Sample Input
    4 5 0 3
    0 1 1 20
    1 3 2 30
    0 3 4 10
    0 2 2 20
    2 3 1 20
    
    Sample Output
    0 2 3 3 40

     1 #include<stdio.h>
     2 #define MAX 510
     3 int INF = 1000000;
     4 struct Edg
     5 {
     6     int len;
     7     int cost;
     8 };
     9 
    10 int d[MAX];
    11 int c[MAX];
    12 Edg Grap[MAX][MAX];
    13 bool vist[MAX];
    14 int pre[MAX];
    15 
    16 void Dijkstra(int begin,int NodeNum)
    17 {
    18     d[begin] = 0;
    19     c[begin] = 0; 
    20     for(int i = 0 ;i <NodeNum ;i++)
    21     {
    22         int index =-1;
    23         int MIN = INF;
    24         for(int j = 0;j < NodeNum ;j++)
    25         {
    26             if(!vist[j] && MIN > d[j])
    27             {
    28                 MIN = d[j];
    29                 index = j;
    30             }
    31         }
    32 
    33         if(index == -1) return;
    34 
    35         vist[index] = true;
    36 
    37         for(int v = 0;v < NodeNum ; v++)
    38         {
    39             if(!vist[v] && Grap[index][v].len != INF)
    40             {
    41                 if(d[index]+ Grap[index][v].len < d[v])
    42                 {
    43                     d[v] = d[index]+ Grap[index][v].len;
    44                     c[v] = c[index] + Grap[index][v].cost;
    45                     pre[v] = index;
    46                 }
    47                 else if(d[index]+ Grap[index][v].len == d[v] && c[v] > c[index] + Grap[index][v].cost)
    48                 {
    49                     c[v] = c[index] + Grap[index][v].cost;
    50                     pre[v] = index;
    51                 }
    52             }
    53         }
    54     }
    55 
    56 }
    57 
    58 
    59 void DFS(int begin,int end)
    60 {
    61     if(end == begin)
    62     {
    63         printf("%d ",end);
    64         return ;
    65     }
    66     DFS(begin,pre[end]);
    67     printf("%d ",end);
    68 }
    69 
    70 int main()
    71 {
    72     int i,j,N,M,S,D,x,y;
    73     Edg Etem;
    74     scanf("%d%d%d%d",&N,&M,&S,&D);
    75 
    76     for(i =0;i < N;i++)
    77     {
    78         for(j =0;j < N;j++)
    79         {
    80             Grap[i][j].cost = INF;
    81             Grap[i][j].len = INF;
    82         }
    83     }
    84 
    85     for(i =0;i < M;i++)
    86     {
    87         scanf("%d%d%d%d",&x,&y,&Etem.len,&Etem.cost);
    88         Grap[x][y] = Grap[y][x] = Etem;
    89         d[i] = c[i] = INF;
    90     }
    91 
    92     Dijkstra(S,N);
    93 
    94     DFS(S,D);
    95 
    96     printf("%d %d
    ",d[D],c[D]);
    97     return 0;
    98 }
  • 相关阅读:
    04_移动端-伪元素选择器
    03_移动端-结构伪类选择器
    02_移动端-属性选择器
    Dva+Antd创建React项目(一)
    Windows 10 使用打印机扫描
    中间件-redis
    #期望dp#51nod 2015 诺德街
    Codeforces Round #685 (Div. 2)
    USACO 4.2
    #保序回归问题,单调栈,二分#洛谷 5294 [HNOI2019]序列
  • 原文地址:https://www.cnblogs.com/xiaoyesoso/p/4291874.html
Copyright © 2020-2023  润新知