Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival. Many types of fillings and crusts can be found in traditional mooncakes according to the region's culture. Now given the inventory amounts and the prices of all kinds of the mooncakes, together with the maximum total demand of the market, you are supposed to tell the maximum profit that can be made.
Note: partial inventory storage can be taken. The sample shows the following situation: given three kinds of mooncakes with inventory amounts being 180, 150, and 100 thousand tons, and the prices being 7.5, 7.2, and 4.5 billion yuans. If the market demand can be at most 200 thousand tons, the best we can do is to sell 150 thousand tons of the second kind of mooncake, and 50 thousand tons of the third kind. Hence the total profit is 7.2 + 4.5/2 = 9.45 (billion yuans).
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (<=1000), the number of different kinds of mooncakes, and D (<=500 thousand tons), the maximum total demand of the market. Then the second line gives the positive inventory amounts (in thousand tons), and the third line gives the positive prices (in billion yuans) of N kinds of mooncakes. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the maximum profit (in billion yuans) in one line, accurate up to 2 decimal places.
Sample Input:
3 200
180 150 100
7.5 7.2 4.5
Sample Output:
9.45
坑点:1、这种题目,最好把所以进行运算的变量都设为double。2、最大总量可能为0。
1 #include <iostream> 2 3 #include <algorithm> 4 5 #include <iomanip> 6 7 using namespace std; 8 9 10 11 struct moom 12 13 { 14 15 double pr; 16 17 double cc; 18 19 }; 20 21 22 23 bool cmp(moom a,moom b) 24 25 { 26 27 return a.pr/a.cc>b.pr/b.cc; 28 29 } 30 31 32 33 moom mm[1000]; 34 35 36 37 int main() 38 39 { 40 41 int n,i; 42 43 double d; 44 45 while(cin>>n) 46 47 { 48 49 cin>>d; 50 51 52 53 for(i=0;i<n;i++) 54 55 { 56 57 58 59 cin>>mm[i].cc; 60 61 } 62 63 64 65 for(i=0;i<n;i++) 66 67 { 68 69 70 71 cin>>mm[i].pr; 72 73 } 74 75 76 77 sort(mm,mm+n,cmp); 78 79 80 81 i=0;double sum=0; 82 83 while(true) 84 85 { 86 87 if(mm[i].cc==0) break; 88 89 if(d<=mm[i].cc) 90 91 { 92 93 sum=sum+d/mm[i].cc*mm[i].pr; 94 95 break; 96 97 } 98 99 else 100 101 { 102 103 d=d-mm[i].cc; 104 105 sum=sum+mm[i].pr; 106 107 i++; 108 109 } 110 111 } 112 113 114 115 cout<<fixed<<setprecision(2)<<sum<<endl; 116 117 } 118 119 return 0; 120 121 } 122 123 124 125