• POJ about lcm


    由题知:

    g(n)=sigma{phi(n/d)*n/d},d|n

    f(n)=(g(n)+1)/2

    由于欧拉函数的积性,phi(n*m)=phi(n)*phi(m),gcd(n,m)=1

    所以,n=pi(pi^ci)

    故g(n)=g(pi(pi^ci))。

    g(n)=pi(g(pi^ci)

    g(pi^ci)=sigma(phi(pi^ci)pi^ci)

    而对于phi(pi^ci)(pi-1)*(pi^(ci-1)

    至此就这题就解决了!

    我的代码:

    超时的代码:

    LL sumlcm(int n) {
    int te = 0, temp = n;
    LL sum = 0;
    if (n == 1)
    return 1;
    te = (int) sqrt(n * 1.0);
    sum = (LL) n;
    for (int i = 2; i <= te; i++) {
    if (n % i == 0) {
    sum = sum / i * (i - 1);
    while (n % i == 0) {
    n /= i;
    }
    }
    }
    if (n > 1) {
    sum = sum / n * (n - 1);
    }
    return sum * temp / 2;
    }
    void solve(int n) {
    int i, te, temp;
    LL sum;
    te = (int) sqrt(n * 1.0);
    for (i = 1, sum = 0; i <= te; i++) {
    if (n % i == 0) {
    temp = n / i;
    sum += sumlcm(temp);
    if (i != temp) {
    sum += sumlcm(i);
    }
    }
    }
    printf("%I64d\n", sum);
    }

    AC Code:

     
     
    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #define LL long long
    #define nmax 44725
    int flag[nmax], prime[nmax], plen;
    void mkprime() {
    memset(flag, -1, sizeof(flag));
    int i, j;
    for (i = 2, plen = 0; i < nmax; i++) {
    if (flag[i]) {
    prime[plen++] = i;
    }
    for (j = 0; (j < plen) && (i * prime[j] < nmax); j++) {
    flag[i * prime[j]] = 0;
    if (i % prime[j] == 0) {
    break;
    }
    }
    }
    }
    int getPow(int a, int b) {
    int res;
    res = 1;
    while (b) {
    if (b & 1) {
    res = res * a;
    }
    a = a * a;
    b >>= 1;
    }
    return res;
    }
    int getpPhi(int p, int c) {
    if (c == 0) {
    return 1;
    }
    return (p - 1) * getPow(p, c - 1);
    }

    LL calc(int p, int c) {
    int i;
    LL temp, sum;
    for (i = 0, sum = 0LL, temp = 1LL; i <= c; i++) {
    sum += temp * getpPhi(p, i);
    temp = temp * p;
    }
    return sum;
    }
    void solve(int n) {
    int i, te, cnt;
    LL res;
    te = (int) (sqrt(n * 1.0));
    for (i = 0, res = 1LL; (i < plen) && (prime[i] <= te); i++) {
    if (n % prime[i] == 0) {
    cnt = 0;
    while (n % prime[i] == 0) {
    cnt++;
    n /= prime[i];
    }
    res = res * calc(prime[i], cnt);
    }
    }
    if (n > 1) {
    res = res * calc(n, 1);
    }
    printf("%lld\n", (res + 1) / 2);
    }
    int main() {
    #ifndef ONLINE_JUDGE
    freopen("data.in", "r", stdin);
    #endif
    int n;
    mkprime();
    while (scanf("%d", &n) != EOF) {
    solve(n);
    }
    return 0;
    }
     
     
    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #define LL long long
    #define nmax 44725
    int flag[nmax], prime[nmax], plen;
    void mkprime() {
    memset(flag, -1, sizeof(flag));
    int i, j;
    for (i = 2, plen = 0; i < nmax; i++) {
    if (flag[i]) {
    prime[plen++] = i;
    }
    for (j = 0; (j < plen) && (i * prime[j] < nmax); j++) {
    flag[i * prime[j]] = 0;
    if (i % prime[j] == 0) {
    break;
    }
    }
    }
    }
    LL getPow(int a, int b) {
    LL res, temp;
    res = 1, temp = (LL) a;
    while (b) {
    if (b & 1) {
    res = res * temp;
    }
    temp = temp * temp;
    b >>= 1;
    }
    return res;
    }
    LL calc(int p, int c) {
    LL res;
    res = getPow(p, 2 * c);
    res--;
    res = res / (p + 1);
    res = res * p;
    res++;
    return res;
    }
    void solve(int n) {
    int i, te, cnt;
    LL res;
    te = (int) (sqrt(n * 1.0));
    for (i = 0, res = 1LL; (i < plen) && (prime[i] <= te); i++) {
    if (n % prime[i] == 0) {
    cnt = 0;
    while (n % prime[i] == 0) {
    cnt++;
    n /= prime[i];
    }
    res = res * calc(prime[i], cnt);
    }
    }
    if (n > 1) {
    res = res * calc(n, 1);
    }
    printf("%lld\n", (res + 1) / 2);
    }
    int main() {
    #ifndef ONLINE_JUDGE
    freopen("data.in", "r", stdin);
    #endif
    int n;
    mkprime();
    while (scanf("%d", &n) != EOF) {
    solve(n);
    }
    return 0;
    }
  • 相关阅读:
    sql语句清除mssql日志
    常用的一些webshell木马官方后门
    32个触发事件XSS语句的总结
    XSS的高级利用部分总结 -蠕虫
    IIS7 Appcmd.exe 使用
    PHP Execute Command Bypass Disable_functions
    仿5173游戏交易平台系统SQL注入(可直接脱裤)+Getshell
    win95+ie3-win10+ie11 浏览器执行漏洞
    SQL 、NoSQL数据库教程
    Pytorch快速入门及在线体验
  • 原文地址:https://www.cnblogs.com/xiaoxian1369/p/2121272.html
Copyright © 2020-2023  润新知