• 2021牛客多校3 E/nowcoder 11254 E Math


    题目链接:https://ac.nowcoder.com/acm/contest/11254/E

    题目大意:(sum_{i=1}^{n}sum_{j=1}^{jleqslant i} left [ ij+1mid i^{2} + j^{2} ight ])

    题目思路:
    (xy+1mid x^{2} + y^{2})即为(x^{2} + y^{2} = kleft ( xy+1 ight ))将x看为常数,得(y^{2}-kxy+x^{2}-k=0),根据韦达定理:

    [left{egin{matrix} y_{1}+y_{2} = -frac{a}{b} = kx\ y_{1}y_{2}=frac{a}{c} = x^{2}-k end{matrix} ight. ]

    若有一组(left ( x,y ight ))满足条件,则(left ( x,kx-y ight ))也满足条件,设(ygeqslant x),容易得到(kx-y leqslant y)。我们可以通过递降推出其他解,即构造(left ( x',y' ight )),使(x' = kx - y)(y' = x),此时仍然满足(x^{2} + y^{2} = kleft ( xy+1 ight )),继续将(x')看成常数向下递降,即((x,y) ightarrow (kx-y,x))

    之前我直接构造(left ( x',y' ight )),使(x' = x,y' = kx - y),然后我发现继递降出来的是(kx - y' = y),这不和没构造一样吗 (bushi

    而且这样递降下来的(y'geqslant 0),若将(y'< 0)代入(x^{2} + y^{2} = kleft ( xy+1 ight )),得到正数=负数,显然(y'geqslant 0),将(y = 0)代入得(k=x^{2}),通过往回递增得

    [left{egin{matrix} x' = kx - y\ y' = x end{matrix} ight. ightarrow left{egin{matrix} x = y'\ y = ky' - x' end{matrix} ight. ]

    ((x',y') ightarrow (y',x^{2}y'- x') = (x,y))
    ((x,x^{3}) ightarrow (x^{3},x^{5}-x) ightarrow (x^{5}-x,x^{7}-2x^{3}) ightarrow ……)
    然后枚举x,二分查找即可
    水群时看见这个好像叫韦达跳跃
    想了解的更多可以看看OEIS关于这个定理的解释

    AC代码:

    #include <unordered_map>
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <stack>
    #include <deque>
    #include <queue>
    #include <cmath>
    #include <map>
    #include <set>
    using namespace std;
    typedef __int128 int128;
    typedef pair<int, int> PII;
    typedef pair<double, int> PDI;
    typedef long long ll;
    typedef unsigned long long ull;
    const int INF = 0x3f3f3f3f;
    const int N = 1e7 + 10, M = 1e6 + 30;
    const int base = 1e9;
    const int P = 131;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1.0);
    int a[N];
    vector<int128> vec;
    void inif()
    {
    	vec.push_back(1);
    	for (int128 k = 2; k <= 1e6; ++k)
    	{
    		int128 a = k, b = k * k * k, c;
    		while (1)
    		{
    			if (b > 1e18)
    				break;
    			vec.push_back(b);
    			c = k * k * b - a;
    			a = b, b = c;
    		}
    	}
    	sort(vec.begin(), vec.end());
    }
    int main()
    {
    	inif();
    	int T;
    	scanf("%d", &T);
    	while (T--)
    	{
    		ll x;
    		scanf("%lld", &x);
    		int128 n = x;
    		int p = lower_bound(vec.begin(), vec.end(), n) - vec.begin();
    		if (vec[p] > n)
    			--p;
    		printf("%d
    ", p + 1);
    	}
    	return 0;
    }
    
  • 相关阅读:
    使用snmp+mrtg监控CPU、流量、磁盘空间、内存
    ISO20000
    nginx入门篇----nginx服务器基础配置
    oracle数据库备份和还原
    oracle创建删除用户和表空间
    Centos 6.5安装oracle 11g
    nginx入门篇----安装、部署、升级
    vue 高德地图 地图初始化显示接口返回的多个经纬度
    vue element UI el-table 单元格中超出字省略号显示
    vue + element ui 打印
  • 原文地址:https://www.cnblogs.com/xiaopangpangdehome/p/15057471.html
Copyright © 2020-2023  润新知