• python框架Scrapy中crawlSpider的使用——爬取内容写进MySQL


    一、先在MySQL中创建test数据库,和相应的site数据表

    二、创建Scrapy工程

    #scrapy startproject 工程名
    scrapy startproject demo4

    三、进入工程目录,根据爬虫模板生成爬虫文件

    #scrapy genspider -l # 查看可用模板
    #scrapy genspider -t 模板名 爬虫文件名 允许的域名
    scrapy genspider -t crawl test sohu.com

    四、设置IP池或用户代理(middlewares.py文件)

     1 # -*- coding: utf-8 -*-
     2 # 导入随机模块
     3 import random
     4 # 导入有关IP池有关的模块
     5 from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware
     6 # 导入有关用户代理有关的模块
     7 from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware
     8 
     9 # IP池
    10 class HTTPPROXY(HttpProxyMiddleware):
    11     # 初始化 注意一定是 ip=''
    12     def __init__(self, ip=''):
    13         self.ip = ip
    14 
    15     def process_request(self, request, spider):
    16         item = random.choice(IPPOOL)
    17         try:
    18             print("当前的IP是:"+item["ipaddr"])
    19             request.meta["proxy"] = "http://"+item["ipaddr"]
    20         except Exception as e:
    21             print(e)
    22             pass
    23 
    24 
    25 # 设置IP池
    26 IPPOOL = [
    27     {"ipaddr": "182.117.102.10:8118"},
    28     {"ipaddr": "121.31.102.215:8123"},
    29     {"ipaddr": "1222.94.128.49:8118"}
    30 ]
    31 
    32 
    33 # 用户代理
    34 class USERAGENT(UserAgentMiddleware):
    35     #初始化 注意一定是 user_agent=''
    36     def __init__(self, user_agent=''):
    37         self.user_agent = user_agent
    38 
    39     def process_request(self, request, spider):
    40         item = random.choice(UPPOOL)
    41         try:
    42             print("当前的User-Agent是:"+item)
    43             request.headers.setdefault('User-Agent', item)
    44         except Exception as e:
    45             print(e)
    46             pass
    47 
    48 
    49 # 设置用户代理池
    50 UPPOOL = [
    51     "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:52.0) Gecko/20100101 Firefox/52.0", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36 Edge/14.14393"
    52 ]

    五、settngs.py配置

     1 COOKIES_ENABLED = False
     2 
     3 DOWNLOADER_MIDDLEWARES = {
     4     # 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware':123,
     5     # 'demo4.middlewares.HTTPPROXY' : 125,
     6     'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 2,
     7     'demo4.middlewares.USERAGENT': 1
     8 }
     9 
    10 ITEM_PIPELINES = {
    11     'demo4.pipelines.Demo4Pipeline': 300,
    12 }

    六、定义爬取关注的数据(items.py文件)

     1 # -*- coding: utf-8 -*-
     2 import scrapy
     3 # Define here the models for your scraped items
     4 #
     5 # See documentation in:
     6 # http://doc.scrapy.org/en/latest/topics/items.html
     7 
     8 class Demo4Item(scrapy.Item):
     9     name = scrapy.Field()
    10     link = scrapy.Field()

    七、爬虫文件编写(test.py)

     1 # -*- coding: utf-8 -*-
     2 import scrapy
     3 from scrapy.linkextractors import LinkExtractor
     4 from scrapy.spiders import CrawlSpider, Rule
     5 from demo4.items import Demo4Item
     6 
     7 class TestSpider(CrawlSpider):
     8     name = 'test'
     9     allowed_domains = ['sohu.com']
    10     start_urls = ['http://www.sohu.com/']
    11 
    12     rules = (
    13         Rule(LinkExtractor(allow=('http://news.sohu.com'), allow_domains=('sohu.com')), callback='parse_item',
    14              follow=False),
    15         # Rule(LinkExtractor(allow=('.*?/n.*?shtml'),allow_domains=('sohu.com')), callback='parse_item', follow=False),
    16     )
    17 
    18     def parse_item(self, response):
    19         i = Demo4Item()
    20         i['name'] = response.xpath('//div[@class="news"]/h1/a/text()').extract()
    21         i['link'] = response.xpath('//div[@class="news"]/h1/a/@href').extract()
    22         #i['description'] = response.xpath('//div[@id="description"]').extract()
    23         return i

    八、管道文件编写(pipelines.py)

     1 # -*- coding: utf-8 -*-
     2 import pymysql
     3 import json
     4 # Define your item pipelines here
     5 #
     6 # Don't forget to add your pipeline to the ITEM_PIPELINES setting
     7 # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
     8 
     9 
    10 class Demo4Pipeline(object):
    11     def __init__(self):
    12         # 数据库连接
    13         self.conn = pymysql.connect(host='localhost', user='root', password='123456', database='chapter17', charset='utf8')
    14         self.cur = self.conn.cursor()
    15 
    16     def process_item(self, item, spider):
    17         # 排除空值
    18         for j in range(0, len(item["name"])):
    19             nam = item["name"][j]
    20             lin = item["link"][j]
    21             print(type(nam))
    22             print(type(lin))
    23             # 注意参数化编写
    24             sql = "insert into site(name,link) values(%s,%s)"
    25             self.cur.execute(sql,(nam,lin))
    26             self.conn.commit()
    27         return item
    28     def close_spider(self, spider):
    29         self.cur.close()
    30         self.conn.close()

    九、总结

    1.注意在测试完数据库正常运行时,再开始写入数据,当然,在sql参数化处理的过程中,注意格式,千万不要弄错了

  • 相关阅读:
    Oracle11g: simple sql script examples
    MySQL5.7: datetime
    SQL Server: Datetime,Datetime2
    np.dot()、np.multiply()、np.matmul()方法以及*和@运算符的用法总结
    机器学习基础---机器学习系统设计
    机器学习基础---机器学习诊断法
    机器学习基础---神经网络(调试优化)(随机初始化、梯度检测)
    机器学习作业---神经网络实现多类分类
    机器学习基础---神经网络(属于逻辑回归)(构建训练集以及参数学习)
    机器学习基础---神经网络(属于逻辑回归)(构建假设函数)
  • 原文地址:https://www.cnblogs.com/xiaomingzaixian/p/7127051.html
Copyright © 2020-2023  润新知