• 卡尔曼滤波算法及其代码


     

    下面整篇文章都是转载的。

    最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

    现设线性时变系统的离散状态防城和观测方程为:

    X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

    Y(k) = H(k)·X(k)+N(k)

    其中

    X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

    F(k,k-1)为状态转移矩阵

    U(k)为k时刻动态噪声

    T(k,k-1)为系统控制矩阵

    H(k)为k时刻观测矩阵

    N(k)为k时刻观测噪声

    则卡尔曼滤波的算法流程为:

    1. 预估计X(k)^= F(k,k-1)·X(k-1)
    2. 计算预估计协方差矩阵
      C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
      Q(k) = U(k)×U(k)'
    3. 计算卡尔曼增益矩阵
      K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
      R(k) = N(k)×N(k)'
    4. 更新估计
      X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
    5. 计算更新后估计协防差矩阵
      C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
    6. X(k+1) = X(k)~
      C(k+1) = C(k)~
      重复以上步骤

    其c语言实现代码如下:

    #include "stdlib.h"
    #include "rinv.c"
    int lman(n,m,k,f,q,r,h,y,x,p,g)
    int n,m,k;
    double f[],q[],r[],h[],y[],x[],p[],g[];
    { int i,j,kk,ii,l,jj,js;
    double *e,*a,*b;
    e=malloc(m*m*sizeof(double));
    l=m;
    if (l<n) l=n;
    a=malloc(l*l*sizeof(double));
    b=malloc(l*l*sizeof(double));
    for (i=0; i<=n-1; i++)
    for (j=0; j<=n-1; j++)
    { ii=i*l+j; a[ii]=0.0;
    for (kk=0; kk<=n-1; kk++)
    a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];
    }
    for (i=0; i<=n-1; i++)
    for (j=0; j<=n-1; j++)
    { ii=i*n+j; p[ii]=q[ii];
    for (kk=0; kk<=n-1; kk++)
    p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];
    }
    for (ii=2; ii<=k; ii++)
    { for (i=0; i<=n-1; i++)
    for (j=0; j<=m-1; j++)
    { jj=i*l+j; a[jj]=0.0;
    for (kk=0; kk<=n-1; kk++)
    a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];
    }
    for (i=0; i<=m-1; i++)
    for (j=0; j<=m-1; j++)
    { jj=i*m+j; e[jj]=r[jj];
    for (kk=0; kk<=n-1; kk++)
    e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];
    }
    js=rinv(e,m);
    if (js==0)
    { free(e); free(a); free(b); return(js);}
    for (i=0; i<=n-1; i++)
    for (j=0; j<=m-1; j++)
    { jj=i*m+j; g[jj]=0.0;
    for (kk=0; kk<=m-1; kk++)
    g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];
    }
    for (i=0; i<=n-1; i++)
    { jj=(ii-1)*n+i; x[jj]=0.0;
    for (j=0; j<=n-1; j++)
    x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];
    }
    for (i=0; i<=m-1; i++)
    { jj=i*l; b[jj]=y[(ii-1)*m+i];
    for (j=0; j<=n-1; j++)
    b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];
    }
    for (i=0; i<=n-1; i++)
    { jj=(ii-1)*n+i;
    for (j=0; j<=m-1; j++)
    x[jj]=x[jj]+g[i*m+j]*b[j*l];
    }
    if (ii<k)
    { for (i=0; i<=n-1; i++)
    for (j=0; j<=n-1; j++)
    { jj=i*l+j; a[jj]=0.0;
    for (kk=0; kk<=m-1; kk++)
    a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];
    if (i==j) a[jj]=1.0+a[jj];
    }
    for (i=0; i<=n-1; i++)
    for (j=0; j<=n-1; j++)
    { jj=i*l+j; b[jj]=0.0;
    for (kk=0; kk<=n-1; kk++)
    b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];
    }
    for (i=0; i<=n-1; i++)
    for (j=0; j<=n-1; j++)
    { jj=i*l+j; a[jj]=0.0;
    for (kk=0; kk<=n-1; kk++)
    a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];
    }
    for (i=0; i<=n-1; i++)
    for (j=0; j<=n-1; j++)
    { jj=i*n+j; p[jj]=q[jj];
    for (kk=0; kk<=n-1; kk++)
    p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];
    }
    }
    }
    free(e); free(a); free(b);
    return(js);
    }

    C++实现代码如下:

    ============================kalman.h================================
    // kalman.h: interface for the kalman class.
    //
    //////////////////////////////////////////////////////////////////////
    #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
    #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
    #if _MSC_VER > 1000
    #pragma once
    #endif // _MSC_VER > 1000
    #include <math.h>
    #include "cv.h"
    class kalman
    {
    public:
    void init_kalman(int x,int xv,int y,int yv);
    CvKalman* cvkalman;
    CvMat* state;
    CvMat* process_noise;
    CvMat* measurement;
    const CvMat* prediction;
    CvPoint2D32f get_predict(float x, float y);
    kalman(int x=0,int xv=0,int y=0,int yv=0);
    //virtual ~kalman();
    };
    #endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
    ============================kalman.cpp================================
    #include "kalman.h"
    #include <stdio.h>
    /* tester de printer toutes les valeurs des vecteurs*/
    /* tester de changer les matrices du noises */
    /* replace state by cvkalman->state_post ??? */
    CvRandState rng;
    const double T = 0.1;
    kalman::kalman(int x,int xv,int y,int yv)
    {
    cvkalman = cvCreateKalman( 4, 4, 0 );
    state = cvCreateMat( 4, 1, CV_32FC1 );
    process_noise = cvCreateMat( 4, 1, CV_32FC1 );
    measurement = cvCreateMat( 4, 1, CV_32FC1 );
    int code = -1;
    /* create matrix data */
    const float A[] = {
    1, T, 0, 0,
    0, 1, 0, 0,
    0, 0, 1, T,
    0, 0, 0, 1
    };
    const float H[] = {
    1, 0, 0, 0,
    0, 0, 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 0
    };
    const float P[] = {
    pow(320,2), pow(320,2)/T, 0, 0,
    pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,
    0, 0, pow(240,2), pow(240,2)/T,
    0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)
    };
    const float Q[] = {
    pow(T,3)/3, pow(T,2)/2, 0, 0,
    pow(T,2)/2, T, 0, 0,
    0, 0, pow(T,3)/3, pow(T,2)/2,
    0, 0, pow(T,2)/2, T
    };
    const float R[] = {
    1, 0, 0, 0,
    0, 0, 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 0
    };
    cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
    cvZero( measurement );
    cvRandSetRange( &rng, 0, 0.1, 0 );
    rng.disttype = CV_RAND_NORMAL;
    cvRand( &rng, state );
    memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));
    memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));
    memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));
    memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));
    memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));
    //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );
    //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
    //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
    /* choose initial state */
    state->data.fl[0]=x;
    state->data.fl[1]=xv;
    state->data.fl[2]=y;
    state->data.fl[3]=yv;
    cvkalman->state_post->data.fl[0]=x;
    cvkalman->state_post->data.fl[1]=xv;
    cvkalman->state_post->data.fl[2]=y;
    cvkalman->state_post->data.fl[3]=yv;
    cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );
    cvRand( &rng, process_noise );
    }
    CvPoint2D32f kalman::get_predict(float x, float y){
    /* update state with current position */
    state->data.fl[0]=x;
    state->data.fl[2]=y;
    /* predict point position */
    /* x'k=A鈥k+B鈥k
    P'k=A鈥k-1*AT + Q */
    cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );
    cvRand( &rng, measurement );
    /* xk=A?xk-1+B?uk+wk */
    cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );
    /* zk=H?xk+vk */
    cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );
    /* adjust Kalman filter state */
    /* Kk=P'k鈥T鈥?H鈥'k鈥T+R)-1
    xk=x'k+Kk鈥?zk-H鈥'k)
    Pk=(I-Kk鈥)鈥'k */
    cvKalmanCorrect( cvkalman, measurement );
    float measured_value_x = measurement->data.fl[0];
    float measured_value_y = measurement->data.fl[2];
    const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );
    float predict_value_x = prediction->data.fl[0];
    float predict_value_y = prediction->data.fl[2];
    return(cvPoint2D32f(predict_value_x,predict_value_y));
    }
    void kalman::init_kalman(int x,int xv,int y,int yv)
    {
    state->data.fl[0]=x;
    state->data.fl[1]=xv;
    state->data.fl[2]=y;
    state->data.fl[3]=yv;
    cvkalman->state_post->data.fl[0]=x;
    cvkalman->state_post->data.fl[1]=xv;
    cvkalman->state_post->data.fl[2]=y;
    cvkalman->state_post->data.fl[3]=yv;
    }

  • 相关阅读:
    .NET设计模式系列文章《转》
    sharpwebmail邮件管理系统开源 下载及使用方法
    POJ 1949 DP?
    POJ 1948 DP
    POJ 1945 暴搜+打表 (Or 暴搜+判重)
    POJ 1944 并查集(模拟)
    POJ 3259 Wormholes SPFA判负环
    POJ 3268 Dijkstra+priority_queue或SPFA
    POJ 3299 模拟
    POJ 3342 树形DP+Hash
  • 原文地址:https://www.cnblogs.com/xiaoming1989/p/2387798.html
Copyright © 2020-2023  润新知