• Faster R-CNN安装笔记,只用CPU


    转自:http://blog.sina.com.cn/s/blog_679f93560102wpyf.html

    • 下载代码和数据
     
    • 下载demo模型数据
    [root@localhost py-faster-rcnn]# ./data/scripts/fetch_faster_rcnn_models.sh
    Downloading Faster R-CNN demo models (695M)...
    。。。
    Unzipping...
    faster_rcnn_models/
    faster_rcnn_models/ZF_faster_rcnn_final.caffemodel
    faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel
     
     
    • 编译cython
    进入lib目录,修改setup.py,注释掉GPU相关代码,如下
     
    。。。
    #CUDA = locate_cuda()
     
    。。。
    #            self.set_executable('compiler_so', CUDA['nvcc'])
    。。。
    #    Extension('nms.gpu_nms',
    #        ['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'],
    #        library_dirs=[CUDA['lib64']],
    #        libraries=['cudart'],
    #        language='c++',
    #        runtime_library_dirs=[CUDA['lib64']],
    #        # this syntax is specific to this build system
    #        # we're only going to use certain compiler args with nvcc and not with
    #        # gcc the implementation of this trick is in customize_compiler() below
    #        extra_compile_args={'gcc': ["-Wno-unused-function"],
    #                            'nvcc': ['-arch=sm_35',
    #                                     '--ptxas-options=-v',
    #                                     '-c',
    #                                     '--compiler-options',
    #                                     "'-fPIC'"]},
    #        include_dirs = [numpy_include, CUDA['include']]
    #    ),
    。。。
     
    编译:
    [root@localhost lib]# make
     
    • 安装caffe(自带的,不是通用的)
    进入caffe-fast-rcnn目录,大部分跟前面caffe安装记录一文一样,修改Makefile.config为
     
    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
     
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 1
     
    # CPU-only switch (uncomment to build without GPU support).
    CPU_ONLY := 1
     
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
     
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #    You should not set this flag if you will be reading LMDBs with any
    #    possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
     
    # Uncomment if you're using OpenCV 3
    # OPENCV_VERSION := 3
     
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
     
    # CUDA directory contains bin/ and lib/ directories that we need.
    # CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
     
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    #CUDA_ARCH := -gencode arch=compute_20,code=sm_20
    #        -gencode arch=compute_20,code=sm_21
    #        -gencode arch=compute_30,code=sm_30
    #        -gencode arch=compute_35,code=sm_35
    #        -gencode arch=compute_50,code=sm_50
    #        -gencode arch=compute_50,code=compute_50
     
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    BLAS_INCLUDE := /usr/include/atlas-x86_64-base
    BLAS_LIB := /usr/lib64/atlas
     
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
     
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
     
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    PYTHON_INCLUDE := /usr/include/python2.7
                      /usr/lib64/python2.7/site-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include
            # $(ANACONDA_HOME)/include/python2.7
            # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
     
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
     
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib64
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
     
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
     
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
     
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/lib64
     
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
     
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
     
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
     
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
     
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    # TEST_GPUID := 0
     
    # enable pretty build (comment to see full commands)
    Q ?= @
     
    修改Makefile
    LIBRARIES += satlas tatlas #新版atlas已经不用这两个lib了:cblas atlas
     
    编译caffe和pycaffe
     [root@localhost caffe-fast-rcnn]# make -j8 && make pycaffe
     
    • 跑demo
    [root@localhost py-faster-rcnn]# ./tools/demo.py
    Traceback (most recent call last):
    File "./tools/demo.py", line 17, in
     from fast_rcnn.config import cfg
     File "/root/zhanxiang/work/py-faster-rcnn/tools/../lib/fast_rcnn/config.py", line 23, in
    from easydict import EasyDict as edict
    ImportError: No module named easydict
     
    缺少Python库easydict,所以安装 pip install easydict
     
    [root@localhost py-faster-rcnn]# ./tools/demo.py
    Traceback (most recent call last):
      File "./tools/demo.py", line 18, in
        from fast_rcnn.test import im_detect
      File "/root/zhanxiang/work/py-faster-rcnn/tools/../lib/fast_rcnn/test.py", line 15, in
        import cv2
    ImportError: No module named cv2
     
    缺少Python库cv2,这个是openCV里面的。那就来装openCV python库
    yum install opencv-python.x86_64
     
    [root@localhost py-faster-rcnn]# python tools/demo.py --cpu
    Traceback (most recent call last):
      File "tools/demo.py", line 21, in
        import matplotlib.pyplot as plt
      File "/usr/lib64/python2.7/site-packages/matplotlib/pyplot.py", line 26, in
        from matplotlib.figure import Figure, figaspect
      File "/usr/lib64/python2.7/site-packages/matplotlib/figure.py", line 36, in
        from matplotlib.axes import Axes, SubplotBase, subplot_class_factory
      File "/usr/lib64/python2.7/site-packages/matplotlib/axes/__init__.py", line 4, in
        from ._subplots import *
      File "/usr/lib64/python2.7/site-packages/matplotlib/axes/_subplots.py", line 10, in
        from matplotlib.axes._axes import Axes
      File "/usr/lib64/python2.7/site-packages/matplotlib/axes/_axes.py", line 14, in
        from matplotlib import unpack_labeled_data
    ImportError: cannot import name unpack_labeled_data
     
    看起来跟matplotlib库有关,pip install的版本太旧,直接下载源码安装
     
    [root@localhost work]# git clone git://github.com/matplotlib/matplotlib.git
    [root@localhost work]# cd matplotlib/
    安装依赖包
    [root@localhost matplotlib]# yum-builddep python-matplotlib
    安装
    [root@localhost matplotlib]# python setup.py install
     
    [root@localhost py-faster-rcnn]# python tools/demo.py --cpu
    Traceback (most recent call last):
      File "tools/demo.py", line 19, in
        from fast_rcnn.nms_wrapper import nms
      File "/root/zhanxiang/work/py-faster-rcnn/tools/../lib/fast_rcnn/nms_wrapper.py", line 9, in
        from nms.gpu_nms import gpu_nms
    ImportError: No module named gpu_nms
     
    修改nms_wrapper.py,改force_cpu =True
    [root@localhost py-faster-rcnn]# vi lib/fast_rcnn/nms_wrapper.py
    def nms (dets, thresh, force_cpu =True):
     
    • 大功告成
    [root@localhost py-faster-rcnn]# python tools/demo.py --cpu
    就能看到结果了

     

    更多资源:http://www.cnblogs.com/justinzhang/p/5386837.html

  • 相关阅读:
    后序非递归遍历二叉树的应用
    关于驰骋工作流程引擎,工作流程管理系统演示与学习环境发布的通知。
    驰骋工作流程引擎,ccflow,如何把子线程的数据汇总到合流节点表单中去?
    关于取消ccflow abc 级别用户与开放表单设计器源代码的通知
    驰骋工作流程引擎问题解答,武汉朋友。
    ccform 单据打印的规则调整与新增功能发布说明
    发几个傻瓜表单设计器预览图片,以方便大家学习.
    关于工作流程管理系统中的现有版本自由表单设计器的停止升级与新版本将要发布的声明.
    ccflow向流程开始节点表单传输数据方法大全
    利用开源的驰骋工作流程引擎,处理的集团公司流程应用案例之一.
  • 原文地址:https://www.cnblogs.com/xiaoming123abc/p/5823682.html
Copyright © 2020-2023  润新知