• 简单MDP分析(Markov decision processes)


    MDP又称马尔可夫决策过程。

    MDP提供了一种结果部分随机部分可控的决策制定框架,具体而言,马尔可夫决策过程是离散时间点的随机控制过程。 在每一步,过程在特定的状态S,而决策者可能选择任何在状态S下可用的行动 a,过程在下一个时间点随机的进入S'状态,并且给予决策者奖励  R_a(s,s')

    过程选择行为a 进入 s'状态的可能性由状态转移函数 P_a(s,s')决定,然而下一个状态S'只依赖于当前状态,而与以前的状态无关,换句话说,马尔科夫决策过程的状态转移具有markov性。

    马尔可夫决策过程是一个四元组。(S,A,P_cdot(cdot,cdot),R_cdot(cdot,cdot))其中

  • S 是有限的状态集合
  • A 有限行动集合(或者, A_s 是在状态s下可以选择的行动的集合),
  • P_a(s,s') = Pr(s_{t+1}=s' mid s_t = s, a_t=a) 是在状态s下时间点t执行行动a在时间点t + 1进入s'状态的概率。
  • R_a(s,s') 是由状态s到s'的立即回报(或者预期立即回报)。

    最主要的问题是如何找到一个策略使总预期回报最大。
    选择一个策略pi

  • sum^{infty}_{t=0} {gamma^t R_{a_t} (s_t, s_{t+1})}     (where we choose a_t = pi(s_t))
    当中 gamma  是折扣因子,0 le gamma < 1

    下面介绍二种解决算法

    其中
    clip_image054

    值迭代算法。

    1、 将每一个s的V(s)初始化为0

    2、 循环直到收敛 {

    对于每一个状态s,对V(s)做更新

    clip_image076

    }


     值迭代法使V值收敛到V*,而策略迭代法关注clip_image062[4],使clip_image062[5]收敛到clip_image069[6]

    1、 将随机指定一个S到A的映射clip_image062[6]

    2、 循环直到收敛 {

    (a) 令clip_image078

    (b) 对于每一个状态s,对clip_image080做更新

    clip_image082

    }

  • 相关阅读:
    简单介绍三层架构
    Java字符串常量池是什么?为什么要有这种常量池?
    java中String、StringBuffer和StringBuilder的区别(简单介绍)
    java中equals以及==的用法(简单介绍)
    关于java中Exception异常
    职场沟通,别光靠嘴
    小目标 | DAX高级实践-Power BI与Excel联合应用
    本号讯 | 微软和百度携手推进全球自动驾驶技术; 微软发布新一代可垂直可水平滚动的Arc鼠标
    你有一枚私人同声传译员待领取
    有了这套物联网节水平台,他决定回去继续管理农场
  • 原文地址:https://www.cnblogs.com/xiaokangzi/p/3576148.html
  • Copyright © 2020-2023  润新知