• 利用Python爬取新冠肺炎疫情实时数据,Pyecharts画2019-nCoV疫情地图


    前言

    • 腾讯网页数据有点变化,所以重新爬取了一下
    • 基于pyecharts的可视化,这次更新新加了注释
    • 数据源 腾讯疫情实时追踪
    • 后期会继续更新pyecharts的绘图,搭建可视化大屏,感兴趣的可以先关注一下
    • 源文件下载链接无需积分

    第一部分 网页分析

    今天重新整理了一下,发现数据结构和之前的有所变化,把具体的操作步骤也说一下吧!
    打开网址推荐使用火狐浏览器,F12 进入开发者工具(刷新一下页面),如下:

    在这里插入图片描述
    分析请求头

    • name=disease_h5 是数据位置
    • callback=jQuery341021795676971428168_1580642523637_=1580642523638返回当前时间戳的一个函数
      所以我们请求的URL为:https://view.inews.qq.com/g2/getOnsInfoname=disease_h5
      (自己尝试一下,这里需要找规律)
      在这里插入图片描述

    第二部分 数据准备

    导入模块

    import time 
    import json
    import requests
    from datetime import datetime
    import pandas as pd 
    import numpy as np

    抓取数据

    def catch_data():
        url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
        reponse = requests.get(url=url).json()
        #返回数据字典
        data = json.loads(reponse['data'])
        return data
    data = catch_data()
    data.keys()
    dict_keys(['chinaTotal', 'chinaAdd', 'lastUpdateTime', 'areaTree', 'chinaDayList', 'chinaDayAddList'])

    数据处理

    # 数据集包括["国内总量","国内新增","更新时间","数据明细","每日数据","每日新增"]
    
    lastUpdateTime = data['lastUpdateTime']
    chinaTotal = data['chinaTotal']
    chinaAdd = data['chinaAdd']
    print(chinaTotal)
    print(chinaAdd)
     
    {'confirm': 17238, 'suspect': 21558, 'dead': 361, 'heal': 475}
    {'confirm': 2858, 'suspect': 2014, 'dead': 57, 'heal': 147}
     
    国内数据处理 第一步
    # 数据明细,数据结构比较复杂,一步一步打印出来看,先明白数据结构
    areaTree = data['areaTree']
    # 国内数据
    china_data = areaTree[0]['children']
    china_list = []
    for a in range(len(china_data)):
        province = china_data[a]['name']
        province_list = china_data[a]['children']
        for b in range(len(province_list)):
            city = province_list[b]['name']
            total = province_list[b]['total']
            today = province_list[b]['today']
            china_dict = {}
            china_dict['province'] = province
            china_dict['city'] = city
            china_dict['total'] = total
            china_dict['today'] = today
            china_list.append(china_dict)
            
    china_data = pd.DataFrame(china_list)
    china_data.head()
     
     
     cityprovincetodaytotal
    0 武汉 湖北 {'confirm': 1033, 'suspect': 0, 'dead': 41, 'h... {'confirm': 5142, 'suspect': 0, 'dead': 265, '...
    1 黄冈 湖北 {'confirm': 244, 'suspect': 0, 'dead': 2, 'hea... {'confirm': 1246, 'suspect': 0, 'dead': 17, 'h...
    2 孝感 湖北 {'confirm': 169, 'suspect': 0, 'dead': 0, 'hea... {'confirm': 918, 'suspect': 0, 'dead': 14, 'he...
    3 襄阳 湖北 {'confirm': 107, 'suspect': 0, 'dead': 0, 'hea... {'confirm': 548, 'suspect': 0, 'dead': 0, 'hea...
    4 荆州 湖北 {'confirm': 166, 'suspect': 0, 'dead': 2, 'hea... {'confirm': 499, 'suspect': 0, 'dead': 6, 'hea...
    国内数据处理 第二步
    # 定义数据处理函数
    def confirm(x):
        confirm = eval(str(x))['confirm']
        return confirm
    def suspect(x):
        suspect = eval(str(x))['suspect']
        return suspect
    def dead(x):
        dead = eval(str(x))['dead']
        return dead
    def heal(x):
        heal =  eval(str(x))['heal']
        return heal
    # 函数映射
    china_data['confirm'] = china_data['total'].map(confirm)
    china_data['suspect'] = china_data['total'].map(suspect)
    china_data['dead'] = china_data['total'].map(dead)
    china_data['heal'] = china_data['total'].map(heal)
    china_data['addconfirm'] = china_data['today'].map(confirm)
    china_data['addsuspect'] = china_data['today'].map(suspect)
    china_data['adddead'] = china_data['today'].map(dead)
    china_data['addheal'] = china_data['today'].map(heal)
    china_data = china_data[["province","city","confirm","suspect","dead","heal","addconfirm","addsuspect","adddead","addheal"]]
    china_data.head()
     
     provincecityconfirmsuspectdeadhealaddconfirmaddsuspectadddeadaddheal
    0 湖北 武汉 5142 0 265 181 1033 0 41 0
    1 湖北 黄冈 1246 0 17 27 244 0 2 0
    2 湖北 孝感 918 0 14 2 169 0 0 0
    3 湖北 襄阳 548 0 0 0 107 0 0 0
    4 湖北 荆州 499 0 6 1 166 0 2 0
    国际数据处理
    global_data = pd.DataFrame(data['areaTree'])
    global_data['confirm'] = global_data['total'].map(confirm)
    global_data['suspect'] = global_data['total'].map(suspect)
    global_data['dead'] = global_data['total'].map(dead)
    global_data['heal'] = global_data['total'].map(heal)
    global_data['addconfirm'] = global_data['today'].map(confirm)
    global_data['addsuspect'] = global_data['today'].map(suspect)
    global_data['adddead'] = global_data['today'].map(dead)
    global_data['addheal'] = global_data['today'].map(heal)
    world_name = pd.read_excel("世界各国中英文对照.xlsx")
    global_data = pd.merge(global_data,world_name,left_on ="name",right_on = "中文",how="inner")
    global_data = global_data[["name","英文","confirm","suspect","dead","heal","addconfirm","addsuspect","adddead","addheal"]]
    global_data.head()
     
     name英文confirmsuspectdeadhealaddconfirmaddsuspectadddeadaddheal
    0 中国 China 17219 0 361 480 2732 0 57 53
    1 日本 Japan 20 0 0 1 0 0 0 0
    2 泰国 Thailand 19 0 0 7 0 0 0 0
    3 新加坡 Singapore 18 0 0 0 0 0 0 0
    4 韩国 Korea(republic of) 15 0 0 0 0 0 0 0
    日数据处理
    chinaDayList = pd.DataFrame(data['chinaDayList'])
    chinaDayList = chinaDayList[['date','confirm','suspect','dead','heal']]
    chinaDayList.head()
     
     dateconfirmsuspectdeadheal
    0 01.13 41 0 1 0
    1 01.14 41 0 1 0
    2 01.15 41 0 2 5
    3 01.16 45 0 2 8
    4 01.17 62 0 2 12
    日新增数据处理
    chinaDayAddList = pd.DataFrame(data['chinaDayAddList'])
    chinaDayAddList = chinaDayAddList[['date','confirm','suspect','dead','heal']]
    chinaDayAddList.head()
     
     
     dateconfirmsuspectdeadheal
    0 01.20 77 27 0 0
    1 01.21 149 53 3 0
    2 01.22 131 257 8 0
    3 01.23 259 680 8 6
    4 01.24 444 1118 16 3

    第三部分 数据可视化

    总数据明细

    from pyecharts.charts import * #导入所有图表
    from pyecharts import options as opts
    #导入pyecharts的主题(如果不使用可以跳过)
    from pyecharts.globals import ThemeType
    total_pie = Pie(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS,width = '500px',height ='350px'))  #设置主题,和画布大小
    total_pie.add("",[list(z) for z in zip(chinaTotal.keys(), chinaTotal.values())],
                center=["50%", "50%"], #图的位置
                radius=[50, 80])   #内外径大小
    total_pie.set_global_opts(
                title_opts=opts.TitleOpts(title="全国总量",subtitle=("截止"+lastUpdateTime)))
    total_pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{c}"))  #标签格式
    total_pie.render_notebook()
     
        <div id="df41be401be54cb6bd113d776a0d5a49" style="500px; height:350px;"></div>
     
    totaladd_pie = Pie(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS,width = '500px',height ='350px'))  #设置主题,和画布大小
    totaladd_pie.add("",[list(z) for z in zip(chinaAdd.keys(), chinaAdd.values())],
                center=["50%", "50%"],
                radius=[50, 80])
    totaladd_pie.set_global_opts(
                title_opts=opts.TitleOpts(title="昨日新增"))
    totaladd_pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{c}"))  #标签格式
    totaladd_pie.render_notebook()
        <div id="e7f89ced2eee4f72aabf78c05ab56dc1" style="500px; height:350px;"></div>

    全球疫情热图

    world_map = Map(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
    world_map.add("",[list(z) for z in zip(list(global_data["英文"]), list(global_data["confirm"]))], "world",is_map_symbol_show=False)
    world_map.set_global_opts(title_opts=opts.TitleOpts(title="2019_nCoV-世界疫情地图"),
                              visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
                              pieces = [
                            {"min": 101 , "label": '>100'}, #不指定 max,表示 max 为无限大
                            {"min": 10, "max": 100, "label": '10-100'},
                            {"min": 0, "max": 9, "label": '0-9' }]))
    world_map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    world_map.render_notebook()
     
        <div id="c938cdb9be164ce89a16c8c3788edf61" style="900px; height:500px;"></div>

    中国疫情地图热图绘制

    #数据处理
    area_data = china_data.groupby("province")["confirm"].sum().reset_index()
    area_data.columns = ["province","confirm"]
    area_map = Map(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
    area_map.add("",[list(z) for z in zip(list(area_data["province"]), list(area_data["confirm"]))], "china",is_map_symbol_show=False)
    area_map.set_global_opts(title_opts=opts.TitleOpts(title="2019_nCoV中国疫情地图"),visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
                    pieces = [
                            {"min": 1001 , "label": '>1000',"color": "#893448"}, #不指定 max,表示 max 为无限大
                            {"min": 500, "max": 1000, "label": '500-1000',"color": "#ff585e"},
                            {"min": 101, "max": 499, "label": '101-499',"color": "#fb8146"},
                            {"min": 10, "max": 100, "label": '10-100',"color": "#ffb248"},
                            {"min": 0, "max": 9, "label": '0-9',"color" : "#fff2d1" }]))
    area_map.render_notebook()
     
        <div id="4afca4394dc74d64aa320c7831ca4bd1" style="900px; height:500px;"></div>

    绘制每日数据趋势

    每日累计数据趋势
    line1 = Line(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
    line1.add_xaxis(list(chinaDayList["date"]))
    line1.add_yaxis("治愈",list(chinaDayList["heal"]),is_smooth=True)
    line1.add_yaxis("死亡", list(chinaDayList["dead"]),is_smooth=True)
    line1.set_global_opts(title_opts=opts.TitleOpts(title="Line1-治愈与死亡趋势"))
    line1.render_notebook()
     
        <div id="8723f81496e14ff1aa3e7ff4b84eaa94" style="900px; height:500px;"></div>
     
    每日累计确诊趋势
    line2 = Line(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
    line2.add_xaxis(list(chinaDayList["date"]))
    line2.add_yaxis("确诊",list(chinaDayList["confirm"]))
    line2.add_yaxis("疑似", list(chinaDayList["suspect"]))
    line2.set_global_opts(title_opts=opts.TitleOpts(title="Line2-确诊与疑似趋势"))
    line2.render_notebook()

        <div id="70d5c115f4344fffa84cf3aec7357c6a" style="900px; height:500px;"></div>
     
    每日新增
    bar = Bar(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS,width = '900px',height ='400px'))
    bar .add_xaxis(list(chinaDayAddList["date"]))
    bar .add_yaxis("确诊", list(chinaDayAddList["confirm"]))
    bar .add_yaxis("疑似", list(chinaDayAddList["suspect"]))
    bar .add_yaxis("死亡", list(chinaDayAddList["dead"]))
    bar .add_yaxis("治愈", list(chinaDayAddList["heal"]))
    bar .set_global_opts(title_opts=opts.TitleOpts(title="每日新增数据趋势"))
    bar.render_notebook()
        <div id="f361d22988f248c3a8dccd9da4c05962" style="900px; height:400px;"></div>
     

    第四部分 图片汇总

    page = Page()
    page.add(total_pie)
    page.add(totaladd_pie)
    page.add(world_map)
    page.add(area_map)
    page.add(line1)
    page.add(line2)
    page.add(bar)
    page.render("2019_nCoV 可视化.html")
     

    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 相关阅读:
    RabbitMQ官方文档翻译之Simple(一)
    rabbitMq集成Spring后,消费者设置手动ack,并且在业务上控制是否ack
    RabbitMQ消息队列知识点归纳
    理解Java中HashMap的工作原理
    mybatis 主键回显
    quart任务调度框架实战
    springmvc常用注解标签详解
    Java程序员玩Linux学操作系统
    在网页中发起QQ临时对话的方法
    软件测试技术学习总结
  • 原文地址:https://www.cnblogs.com/xiaohuhu/p/12395354.html
Copyright © 2020-2023  润新知