前言
- 腾讯网页数据有点变化,所以重新爬取了一下
- 基于pyecharts的可视化,这次更新新加了注释
- 数据源 腾讯疫情实时追踪
- 后期会继续更新pyecharts的绘图,搭建可视化大屏,感兴趣的可以先关注一下
- 源文件下载链接无需积分
第一部分 网页分析
今天重新整理了一下,发现数据结构和之前的有所变化,把具体的操作步骤也说一下吧!
打开网址推荐使用火狐浏览器,F12 进入开发者工具(刷新一下页面),如下:
分析请求头
- name=disease_h5 是数据位置
- callback=jQuery341021795676971428168_1580642523637_=1580642523638返回当前时间戳的一个函数
所以我们请求的URL为:https://view.inews.qq.com/g2/getOnsInfoname=disease_h5
(自己尝试一下,这里需要找规律)
第二部分 数据准备
导入模块
import time
import json
import requests
from datetime import datetime
import pandas as pd
import numpy as np
抓取数据
def catch_data():
url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
reponse = requests.get(url=url).json()
data = json.loads(reponse['data'])
return data
data = catch_data()
data.keys()
dict_keys(['chinaTotal', 'chinaAdd', 'lastUpdateTime', 'areaTree', 'chinaDayList', 'chinaDayAddList'])
数据处理
lastUpdateTime = data['lastUpdateTime']
chinaTotal = data['chinaTotal']
chinaAdd = data['chinaAdd']
print(chinaTotal)
print(chinaAdd)
{'confirm': 17238, 'suspect': 21558, 'dead': 361, 'heal': 475}
{'confirm': 2858, 'suspect': 2014, 'dead': 57, 'heal': 147}
国内数据处理 第一步
areaTree = data['areaTree']
china_data = areaTree[0]['children']
china_list = []
for a in range(len(china_data)):
province = china_data[a]['name']
province_list = china_data[a]['children']
for b in range(len(province_list)):
city = province_list[b]['name']
total = province_list[b]['total']
today = province_list[b]['today']
china_dict = {}
china_dict['province'] = province
china_dict['city'] = city
china_dict['total'] = total
china_dict['today'] = today
china_list.append(china_dict)
china_data = pd.DataFrame(china_list)
china_data.head()
| city | province | today | total |
0 |
武汉 |
湖北 |
{'confirm': 1033, 'suspect': 0, 'dead': 41, 'h... |
{'confirm': 5142, 'suspect': 0, 'dead': 265, '... |
1 |
黄冈 |
湖北 |
{'confirm': 244, 'suspect': 0, 'dead': 2, 'hea... |
{'confirm': 1246, 'suspect': 0, 'dead': 17, 'h... |
2 |
孝感 |
湖北 |
{'confirm': 169, 'suspect': 0, 'dead': 0, 'hea... |
{'confirm': 918, 'suspect': 0, 'dead': 14, 'he... |
3 |
襄阳 |
湖北 |
{'confirm': 107, 'suspect': 0, 'dead': 0, 'hea... |
{'confirm': 548, 'suspect': 0, 'dead': 0, 'hea... |
4 |
荆州 |
湖北 |
{'confirm': 166, 'suspect': 0, 'dead': 2, 'hea... |
{'confirm': 499, 'suspect': 0, 'dead': 6, 'hea... |
国内数据处理 第二步
def confirm(x):
confirm = eval(str(x))['confirm']
return confirm
def suspect(x):
suspect = eval(str(x))['suspect']
return suspect
def dead(x):
dead = eval(str(x))['dead']
return dead
def heal(x):
heal = eval(str(x))['heal']
return heal
china_data['confirm'] = china_data['total'].map(confirm)
china_data['suspect'] = china_data['total'].map(suspect)
china_data['dead'] = china_data['total'].map(dead)
china_data['heal'] = china_data['total'].map(heal)
china_data['addconfirm'] = china_data['today'].map(confirm)
china_data['addsuspect'] = china_data['today'].map(suspect)
china_data['adddead'] = china_data['today'].map(dead)
china_data['addheal'] = china_data['today'].map(heal)
china_data = china_data[["province","city","confirm","suspect","dead","heal","addconfirm","addsuspect","adddead","addheal"]]
china_data.head()
| province | city | confirm | suspect | dead | heal | addconfirm | addsuspect | adddead | addheal |
0 |
湖北 |
武汉 |
5142 |
0 |
265 |
181 |
1033 |
0 |
41 |
0 |
1 |
湖北 |
黄冈 |
1246 |
0 |
17 |
27 |
244 |
0 |
2 |
0 |
2 |
湖北 |
孝感 |
918 |
0 |
14 |
2 |
169 |
0 |
0 |
0 |
3 |
湖北 |
襄阳 |
548 |
0 |
0 |
0 |
107 |
0 |
0 |
0 |
4 |
湖北 |
荆州 |
499 |
0 |
6 |
1 |
166 |
0 |
2 |
0 |
国际数据处理
global_data = pd.DataFrame(data['areaTree'])
global_data['confirm'] = global_data['total'].map(confirm)
global_data['suspect'] = global_data['total'].map(suspect)
global_data['dead'] = global_data['total'].map(dead)
global_data['heal'] = global_data['total'].map(heal)
global_data['addconfirm'] = global_data['today'].map(confirm)
global_data['addsuspect'] = global_data['today'].map(suspect)
global_data['adddead'] = global_data['today'].map(dead)
global_data['addheal'] = global_data['today'].map(heal)
world_name = pd.read_excel("世界各国中英文对照.xlsx")
global_data = pd.merge(global_data,world_name,left_on ="name",right_on = "中文",how="inner")
global_data = global_data[["name","英文","confirm","suspect","dead","heal","addconfirm","addsuspect","adddead","addheal"]]
global_data.head()
| name | 英文 | confirm | suspect | dead | heal | addconfirm | addsuspect | adddead | addheal |
0 |
中国 |
China |
17219 |
0 |
361 |
480 |
2732 |
0 |
57 |
53 |
1 |
日本 |
Japan |
20 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2 |
泰国 |
Thailand |
19 |
0 |
0 |
7 |
0 |
0 |
0 |
0 |
3 |
新加坡 |
Singapore |
18 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
韩国 |
Korea(republic of) |
15 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
日数据处理
chinaDayList = pd.DataFrame(data['chinaDayList'])
chinaDayList = chinaDayList[['date','confirm','suspect','dead','heal']]
chinaDayList.head()
| date | confirm | suspect | dead | heal |
0 |
01.13 |
41 |
0 |
1 |
0 |
1 |
01.14 |
41 |
0 |
1 |
0 |
2 |
01.15 |
41 |
0 |
2 |
5 |
3 |
01.16 |
45 |
0 |
2 |
8 |
4 |
01.17 |
62 |
0 |
2 |
12 |
日新增数据处理
chinaDayAddList = pd.DataFrame(data['chinaDayAddList'])
chinaDayAddList = chinaDayAddList[['date','confirm','suspect','dead','heal']]
chinaDayAddList.head()
| date | confirm | suspect | dead | heal |
0 |
01.20 |
77 |
27 |
0 |
0 |
1 |
01.21 |
149 |
53 |
3 |
0 |
2 |
01.22 |
131 |
257 |
8 |
0 |
3 |
01.23 |
259 |
680 |
8 |
6 |
4 |
01.24 |
444 |
1118 |
16 |
3 |
第三部分 数据可视化
总数据明细
from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.globals import ThemeType
total_pie = Pie(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS,width = '500px',height ='350px'))
total_pie.add("",[list(z) for z in zip(chinaTotal.keys(), chinaTotal.values())],
center=["50%", "50%"],
radius=[50, 80])
total_pie.set_global_opts(
title_opts=opts.TitleOpts(title="全国总量",subtitle=("截止"+lastUpdateTime)))
total_pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{c}"))
total_pie.render_notebook()
<div id="df41be401be54cb6bd113d776a0d5a49" style="500px; height:350px;"></div>
totaladd_pie = Pie(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS,width = '500px',height ='350px'))
totaladd_pie.add("",[list(z) for z in zip(chinaAdd.keys(), chinaAdd.values())],
center=["50%", "50%"],
radius=[50, 80])
totaladd_pie.set_global_opts(
title_opts=opts.TitleOpts(title="昨日新增"))
totaladd_pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{c}"))
totaladd_pie.render_notebook()
<div id="e7f89ced2eee4f72aabf78c05ab56dc1" style="500px; height:350px;"></div>
全球疫情热图
world_map = Map(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
world_map.add("",[list(z) for z in zip(list(global_data["英文"]), list(global_data["confirm"]))], "world",is_map_symbol_show=False)
world_map.set_global_opts(title_opts=opts.TitleOpts(title="2019_nCoV-世界疫情地图"),
visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
pieces = [
{"min": 101 , "label": '>100'},
{"min": 10, "max": 100, "label": '10-100'},
{"min": 0, "max": 9, "label": '0-9' }]))
world_map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
world_map.render_notebook()
<div id="c938cdb9be164ce89a16c8c3788edf61" style="900px; height:500px;"></div>
中国疫情地图热图绘制
area_data = china_data.groupby("province")["confirm"].sum().reset_index()
area_data.columns = ["province","confirm"]
area_map = Map(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
area_map.add("",[list(z) for z in zip(list(area_data["province"]), list(area_data["confirm"]))], "china",is_map_symbol_show=False)
area_map.set_global_opts(title_opts=opts.TitleOpts(title="2019_nCoV中国疫情地图"),visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
pieces = [
{"min": 1001 , "label": '>1000',"color": "#893448"},
{"min": 500, "max": 1000, "label": '500-1000',"color": "#ff585e"},
{"min": 101, "max": 499, "label": '101-499',"color": "#fb8146"},
{"min": 10, "max": 100, "label": '10-100',"color": "#ffb248"},
{"min": 0, "max": 9, "label": '0-9',"color" : "#fff2d1" }]))
area_map.render_notebook()
<div id="4afca4394dc74d64aa320c7831ca4bd1" style="900px; height:500px;"></div>
绘制每日数据趋势
每日累计数据趋势
line1 = Line(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
line1.add_xaxis(list(chinaDayList["date"]))
line1.add_yaxis("治愈",list(chinaDayList["heal"]),is_smooth=True)
line1.add_yaxis("死亡", list(chinaDayList["dead"]),is_smooth=True)
line1.set_global_opts(title_opts=opts.TitleOpts(title="Line1-治愈与死亡趋势"))
line1.render_notebook()
<div id="8723f81496e14ff1aa3e7ff4b84eaa94" style="900px; height:500px;"></div>
每日累计确诊趋势
line2 = Line(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
line2.add_xaxis(list(chinaDayList["date"]))
line2.add_yaxis("确诊",list(chinaDayList["confirm"]))
line2.add_yaxis("疑似", list(chinaDayList["suspect"]))
line2.set_global_opts(title_opts=opts.TitleOpts(title="Line2-确诊与疑似趋势"))
line2.render_notebook()
<div id="70d5c115f4344fffa84cf3aec7357c6a" style="900px; height:500px;"></div>
每日新增
bar = Bar(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS,width = '900px',height ='400px'))
bar .add_xaxis(list(chinaDayAddList["date"]))
bar .add_yaxis("确诊", list(chinaDayAddList["confirm"]))
bar .add_yaxis("疑似", list(chinaDayAddList["suspect"]))
bar .add_yaxis("死亡", list(chinaDayAddList["dead"]))
bar .add_yaxis("治愈", list(chinaDayAddList["heal"]))
bar .set_global_opts(title_opts=opts.TitleOpts(title="每日新增数据趋势"))
bar.render_notebook()
<div id="f361d22988f248c3a8dccd9da4c05962" style="900px; height:400px;"></div>
第四部分 图片汇总
page = Page()
page.add(total_pie)
page.add(totaladd_pie)
page.add(world_map)
page.add(area_map)
page.add(line1)
page.add(line2)
page.add(bar)
page.render("2019_nCoV 可视化.html")