http://acm.hdu.edu.cn/showproblem.php?pid=1025
题目有一定迷惑性,实际就是求LIS,我原来掌握的朴实的O(n^2)算法果断超时,新学了一种二分dp O(nlog(n))的算法,直接上模板了,还要多多体会啊
View Code
#include <iostream> using namespace std ; int dp[10001],p[50001]; int LIS(int n) { int l,r,m,i,tail = 0; for ( dp[ ++ tail ] = p[ 1 ],i = 2 ; i <= n ; ++ i ) { if ( dp[ tail ] <= p[ i ] ) { dp[ ++ tail ] = p[ i ]; continue; } for ( m=((r=tail)+(l=1)>>1) ; l < r ; m=(l+r)>>1 ) if ( dp[ m ] <= p[ i ] ) l = m+1; else r = m; dp[ m ] = p[ i ]; } return tail; } inline bool scan_d(int &num) { char in;bool IsN=false; in=getchar(); if(in==EOF) return false; while(in!='-'&&(in<'0'||in>'9')) in=getchar(); if(in=='-'){ IsN=true;num=0;} else num=in-'0'; while(in=getchar(),in>='0'&&in<='9'){ num*=10,num+=in-'0'; } if(IsN) num=-num; return true; } int main() { int n,nCase=1; while(scan_d(n)) { for(int i=0;i<n;i++) { int x,y; scan_d(x); scan_d(y); p[x]=y; } int ans=LIS(n); printf("Case %d:\n",nCase++); if(ans==1) puts("My king, at most 1 road can be built."); else printf("My king, at most %d roads can be built.\n",ans); putchar('\n'); } return 0; }