• 《DenseBox: Unifying Landmark Localization with End to End Object Detection》学习笔记


    15年论文,百度实验室

    We introduce DenseBox, a unifified end-to-end FCN framework that directly predicts bounding boxes and object class confiences through all locations and scales of an image
     
    讲DenseBox,全卷积网络,可以直接预测目标框和类别置信度。通过某张图像的所有定位和尺度。
     
     
    we focus on one question: To what extent can an one-stage FCN perform on object detection?
    作者的出发点,全卷积网络的目标检测性能到底如何?
     
    pipeline:
    卷积,上采样,从特征图到目标框和置信度是如何操作的呢?
     
    一张输入图像,对应5个输出通道,分别表示有目标的置信度和该点对应目标框四个点之间的距离。
     
    网络结构:
     
    网络输出两个分支,第一个分支参数是1x1x1,输出置信度,第二个分支参数是1x1x4,是目标框4个脚的距离回归。
     
     
     
    第一个分支求输出特征图上的每一点处是否有目标时,采用的时候L2损失函数,没有用交叉熵损失函数的是L2的表现就已经很好了,
    二范数的定义忘了的,可以参考:https://www.zhihu.com/question/20473040,和MSE损失一样,都是计算距离。
    第二个分支是是变量L2损失的和。
     
    标签信息
    in the output coordinate space, its ignore flag fign is set to 1 only if there is any pixel with positive label within rnear = 2 pixel length. 
    and
     
     
    3.4 Refifine with Landmark Localization.
    略。
     
  • 相关阅读:
    反射 元类
    多态
    封装
    继承
    面向基础
    包 logging模块 hashlib模块 openpyxl 深浅拷贝
    常用模块
    re模块(正则表达式)
    模块 导入方式 软件开发目录规范
    第 3 章 镜像
  • 原文地址:https://www.cnblogs.com/xiaoheizi-12345/p/12296704.html
Copyright © 2020-2023  润新知