• FCOS论文学习笔记


    版权声明:本文为博主原创文章,未经博主允许不得转载

    1、动机

        anchor free 和 proposal free

    anchor-based的弊病在于:

        ①模型计算量上,一个特征图像素点取很多个不同尺寸的候选框,正负样本失调、训练时计算所有候选框的IOU耗费计算力

        ②有很多需要优化的超参数


    anchor-based被提出时的考虑:

        ①避免候选框上的所有目标可能存在区域的重复提取特征,可通过特征对应出原图上某块的特征

        ②不同尺度的候选框是为了解决不同大小目标的问题,高召回率需要更高密度的候选框(eg:180K候选框输入FPN网络

    解决的思路是:训练期间对每一个前景像素为中心,预测4D向量(l,t,r,b),

    2、方法

    网络结构:

        backbone+FPN+分类/回归/中心(center-ness分支)

    具体细节:

        ①ground truth(x0,y0,x1,y1,c)表示候选目标的左上和右下角的坐标,c表示类别

        ②对第i层的特征和相对于原图的步长s,在第i层上的每个坐标映射到原图为中心,取xs+s/2为宽等确定位置,如果中心在真实目标框内,就会被赋值为其类别,否则为负样本(0)
        ③对(l,t,r,b)进行损失函数计算,
        ④通过一层的center-ness,减少定位离目标中心远,定义了计算公式并使用BCE损失函数计算,使远离目标中心的得分,从而被NMS筛选掉

    3、总结:

        该算法精度较高,速度较慢,实验结果没有贴,可以看论文,我自己看来,利用每一层步长,计算了目标的定位,采用center-ness对远离中心的样本进行了抑制,比较有用。

    以上为个人理解,如有不当之处,欢迎指正交流~


    每天进步一点点

  • 相关阅读:
    oracle如何查询哪个表数据量大
    SecureRandom生成随机数超慢 导致tomcat启动时间过长的解决办法
    smartctl----硬盘状态监控
    Oracle数据库的状态查询
    jdbc连接数据库使用sid和service_name的区别
    V$INSTANCE 字段说明
    V$PROCESS和V$SESSION,以及使用这两个视图能做什么
    NetOps Defined
    POI 海量数据
    HTML5 CSS3 诱人的实例: 3D立方体旋转动画
  • 原文地址:https://www.cnblogs.com/xiaoheizi-12345/p/10839006.html
Copyright © 2020-2023  润新知