在Xgboost进行调参代码时,出现错误,TypeError: 'str' object is not callable
def modelfit(alg,dtrain,predictors,useTrainCV=True,cv_folds=5,early_stopping_rounds=50): if useTrainCV: xgb_param = alg.get_xgb_params() xgbtrain = xgb.DMatrix(dtrain[predictors].values,label=dtrain[target].values) cvresult = xgb.cv(xgb_param,xgbtrain,num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,metrics='auc',early_stopping_rounds=early_stopping_rounds, show_stdv=False) alg.set_params(n_estimators=cvresult.shape[0]) # Fit the algorithm on the data alg.fit(dtrain[predictors],dtrain['FLAG'],eval_metric='auc') #Predict training set: dtrain_predictions = alg.predict(dtrain[predictors]) dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1] #Print model report: print(" Model Report") print("Accuracy : %.4g" % metrics.accuracy_score(dtrain['FLAG'].values, dtrain_predictions)) print("AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['FLAG'], dtrain_predprob)) print('sucessful') feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score')
解决方法:
将代码中的 alg.booster() 改成alg.get_booster() 即可。