• 正则化的L1范数和L2范数


    范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title

    首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度

    主要的几种类型包括:1)0-1损失函数  2)平方损失函数   3)绝对损失函数  4) 对数损失函数

    0-1损失函数:

             

    平方损失函数:

             

    绝对损失函数:

               

    对数损失函数:

               

    由此延伸出对应的概念:

     

    其次介绍一般的范数表示:

    范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小

    向量的范数:

    1-范数,计算方式为向量所有元素的绝对值之和。 


    2-范数,计算方式跟欧式距离的方式一致。 

     

    矩阵的范数:

    假设矩阵的大小为mn,即m行n列。

    1-范数,又名列和范数。顾名思义,即矩阵列向量中绝对值之和的最大值。 


    2-范数,又名谱范数,计算方法为ATA矩阵的最大特征值的开平方。 
    其中λ1的最大特征值。
     

    正则化也就是经验风险项加上正则化项,从而达到对模型选择的目的,以做到从模型拟合效果(经验风险)和复杂度(正则化项)来选去最优模型。

    正则化的一般表示形式为:

              

    其中第一项表示经验风险,第二项表示正则化项

    正则化可以表示为多个形式,以回归方程为例,由于其损失函数为平方损失,正则化表示为参数向量的L2范数:

            

    在这里||w||表示参数向量w的L2范数。

    正则化也可以表示为参数向量的L1范数

             

    其中||w||表示参数向量w的L1范数

    以上部分的经验风险表现越小模型越复杂,这时候正则化项为表现较大,所以我们主要还是筛选经验风险和正则化项同时较小的模型。

    注:

    L1范数因为表现出比L0范数更好的求解性而应用较为广泛

    L2范数表现为向量各元素平方和求平方根,我们让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。

  • 相关阅读:
    甲骨文新BI应用紧盯SAP客户
    HR相关知识
    透过李宁集团看零售行业BI解决案例
    三全食品:信息化建设狂飙突进的六年
    国际主流商业BI产品对比分析
    项目管理的9个知识领域5个项目管理过程组及项目管理的三维约束
    给管理新手的六点建议(转)
    Oracle BI产品线
    怎么上传应用
    android 各种进度条(ProgressBar)
  • 原文地址:https://www.cnblogs.com/xiaochouk/p/7887172.html
Copyright © 2020-2023  润新知