• 2017-5-14 湘潭市赛 Strange Optimization


    Strange Optimization
    Accepted : 35           Submit : 197
    Time Limit : 1000 MS           Memory Limit : 65536 KB
    
    Strange Optimization
    
    Bobo is facing a strange optimization problem. Given n,m, he is going to find a real number α such that f(12+α) is maximized, where f(t)=mini,j∈Z|in−jm+t|. Help him!
    
    Note: It can be proved that the result is always rational.
    Input
    
    The input contains zero or more test cases and is terminated by end-of-file.
    
    Each test case contains two integers n,m.
    
        1≤n,m≤109
        The number of tests cases does not exceed 104.
    
    Output
    
    For each case, output a fraction p/q which denotes the result.
    Sample Input
    
    1 1
    1 2
    
    Sample Output
    
    1/2
    1/4
    
    Note
    
    For the first sample, α=0 maximizes the function.
    
    Source
    XTU OnlineJudge 
    
    /**
    题目:Strange Optimization
    链接:http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1268
    题意:如题目所述。
    思路:
    f(1/2+a) ,a可以为任意实数,所以实际上等价于f(a); a为任意实数;
    
    i/n - j/m = (m*i-n*j)/(n*m); 分子看上去像是一个ax+by=c这样的式子,也就是x,y有解(i,j都为整数),那么c一定是gcd(a,b)的倍数。
    
    所以m*i-n*j = k*gcd(n,m); k为整数。原式转化为 min |k*d/(n*m) + a| 中的最大值。令Xk=k*d/(n*m)
    
    那么相邻两个结果之间的距离为Xk+1-Xk=d/(n*m), 问题转化为a这个位置到最近的Xk(k为整数)的距离要最大,a应该为Xk+1,Xk(k为整数)的中间位置,这样a到最近的Xk(k为整数)距离最大为d/(2*n*m)。
    
    ans = 1/(2*n*m/gcd(n,m)) ;
    
    */
    
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef pair<int,int> P;
    const int maxn = 1e5+100;
    LL gcd(LL a,LL b)
    {
        return b==0?a:gcd(b,a%b);
    }
    int main()
    {
        LL n, m;
        while(scanf("%I64d%I64d",&n,&m)==2)
        {
            printf("1/%I64d
    ",n/gcd(n,m)*m*2);
        }
        return 0;
    }
  • 相关阅读:
    华强北三代悦虎1562A怎么样?
    改丝印的假华强北三代1562A,用芯良苦!
    华强北三代过软件检测的佳和1562A
    Unlua静态导出
    Unlua编程基础
    Android JNI调用
    手机屏幕参数
    UE4 stats性能埋点
    【JWT】JSON Web Token
    【算法】一致性哈希算法实现
  • 原文地址:https://www.cnblogs.com/xiaochaoqun/p/6856294.html
Copyright © 2020-2023  润新知