• 使用子查询可提升 COUNT DISTINCT 速度 50 倍


    注:这些技术是通用的,只不过我们选择使用Postgres的语法。使用独特的pgAdminIII生成解释图形。

      很有用,但太慢

      Count distinct是SQL分析时的祸根,因此它是我第一篇博客的不二选择。

      首先:如果你有一个大的且能够容忍不精确的数据集,那像HyperLogLog这样的概率计数器应该是你最好的选择。(我们会在以后的博客中谈到HyperLogLog。)但对于需要快速、精准答案的查询,一些简单的子查询可以节省你很多时间。

      让我们以我们一直使用的一个简单查询开始:哪个图表的用户访问量最大?

    1
    2
    3
    4
    5
    6
    7
    select 
      dashboards.name
      count(distinct time_on_site_logs.user_id)
    from time_on_site_logs 
    join dashboards on time_on_site_logs.dashboard_id = dashboards.id
    group by name 
    order by count desc

      首先,我们假设user_id和dashboard_id上已经设置了索引,且有比图表和用户数多得多的日志条目。

      一千万行数据时,查询需要48秒。要知道原因让我们看一下SQL解析:

    Explain Slow

      它慢是因为数据库遍历了所有日志以及所有的图表,然后join它们,再将它们排序,这些都在真正的group和分组和聚合工作之前。

      先聚合,然后Join

      group-聚合后的任何工作代价都要低,因为数据量会更小。group-聚合时我们不需使用dashboards.name,我们也可以先在数据库上做聚集,在join之前:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    select
      dashboards.name,
      log_counts.ct
    from dashboards
    join (
      select
        dashboard_id,
        count(distinct user_id) as ct
      from time_on_site_logs 
      group by dashboard_id
    as log_counts 
    on log_counts.dashboard_id = dashboards.id
    order by log_counts.ct desc

      现在查询运行了20秒,提升了2.4倍。再次通过解析来看一下原因:

      正如设计的,group-聚合在join之前。而且,额外的我们可以利用time_on_site_logs表里的索引。

      首先,缩小数据集

      我们可以做的更好。通过在整个日志表上group-聚合,我们处理了数据库中很多不必要的数据。Count distinct为每个group生成一个哈希——在本次环境中为每个dashboard_id——来跟踪哪些bucket中的哪些值已经检查过。

      我们可以预先计算差异,而不是处理全部数据,这样只需要一个哈希集合。然后我们在此基础上做一个简单的聚集即可。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    select
      dashboards.name,
      log_counts.ct
    from dashboards 
    join (
      select distinct_logs.dashboard_id, 
      count(1) as ct
      from (
        select distinct dashboard_id, user_id
        from time_on_site_logs
      as distinct_logs
      group by distinct_logs.dashboard_id
    as log_counts 
    on log_counts.dashboard_id = dashboards.id
    order by log_counts.ct desc

      我们采取内部的count-distinct-group,然后将数据拆成两部分分成两块。第一块计算distinct (dashboard_id, user_id) 。第二块在它们基础上运行一个简单group-count。跟上面一样,最后再join。

      呵呵,大发现:这样只需要0.7秒!这比上面的查询快28倍,比原来的快了68倍

      通常,数据大小和类型很重要。上面的例子受益于基数中没多少换算。distinct (user_id, dashboard_id)相对于数据总量来说数量也很少。不同的对数越多,用来group和计数的唯一数据就越多——代价便会越来越大。

      下一遇到长时间运行的count distinct时,尝试一些子查询来减负吧。

      原文地址:https://periscope.io/blog/use-subqueries-to-count-distinct-50x-faster.html

  • 相关阅读:
    Javadoc注释的用法
    Java 和 Android系统环境变量设置
    [转载]Android开发新浪微博客户端 完整攻略 [新手必读]
    eclipse中Android程序字符编码不统一的解决方案
    用word2007写blog时表格的显示效果
    解决Vista中的文件关联图标问题。
    用word2007在博客园发布带图片的blog
    在c++中使用gotoxy
    动态多线程任务管理
    几个视频切割工具
  • 原文地址:https://www.cnblogs.com/xiaochao12345/p/3615998.html
Copyright © 2020-2023  润新知