• Python常用数据结构之heapq模块


    Python数据结构常用模块collections、heapq、operator、itertools

    heapq

      堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小于等于该节点所有子节点的值

                                                           

    常用方法

    heappush(heap,item) 往堆中插入一条新的值
    heappop(heap) 从堆中弹出最小值
    heapreplace(heap,item) 从堆中弹出最小值,并往堆中插入item
    heappushpop(heap,item) Python3中的heappushpop更高级
    heapify(x) 以线性时间将一个列表转化为堆
    merge(*iterables,key=None,reverse=False) 合并对个堆,然后输出
    nlargest(n,iterable,key=None) 返回可枚举对象中的n个最大值并返回一个结果集list
    nsmallest(n,iterable,key=None) 返回可枚举对象中的n个最小值并返回一个结果集list

    常用方法示例 

    #coding=utf-8
    
    import heapq
    import random
    
    def test():
        li = list(random.sample(range(100),6))
        print (li)
    
        n = len(li)
        #nlargest
        print ("nlargest:",heapq.nlargest(n, li))
        #nsmallest
        print ("nsmallest:", heapq.nsmallest(n, li)) 
        #heapify
        print('original list is', li) 
        heapq.heapify(li) 
        print('heapify  list is', li)  
        # heappush & heappop  
        heapq.heappush(li, 105)  
        print('pushed heap is', li)  
        heapq.heappop(li)  
        print('popped heap is', li)  
        # heappushpop & heapreplace  
        heapq.heappushpop(li, 130)    # heappush -> heappop  
        print('heappushpop', li)  
        heapq.heapreplace(li, 2)    # heappop -> heappush  
        print('heapreplace', li) 

      >>> [15, 2, 50, 34, 37, 55]
      >>> nlargest: [55, 50, 37, 34, 15, 2]
      >>> nsmallest: [2, 15, 34, 37, 50, 55]
      >>> original list is [15, 2, 50, 34, 37, 55]
      >>> heapify  list is [2, 15, 50, 34, 37, 55]
      >>> pushed heap is [2, 15, 50, 34, 37, 55, 105]
      >>> popped heap is [15, 34, 50, 105, 37, 55]
      >>> heappushpop [34, 37, 50, 105, 130, 55]
      >>> heapreplace [2, 37, 50, 105, 130, 55]

    堆排序示例 

      heapq模块中有几张方法进行排序:

      方法一:

    #coding=utf-8
    
    import heapq
    
    def heapsort(iterable):
        heap = []
        for i in iterable:
            heapq.heappush(heap, i)
    
        return [heapq.heappop(heap) for j in range(len(heap))]
            
    if __name__ == "__main__":
        li = [30,40,60,10,20,50]
        print(heapsort(li))

      >>>> [10, 20, 30, 40, 50, 60]

      方法二(使用nlargest或nsmallest):

    li = [30,40,60,10,20,50]
    #nlargest
    n = len(li)
    print ("nlargest:",heapq.nlargest(n, li))
    #nsmallest
    print ("nsmallest:", heapq.nsmallest(n, li))

      >>> nlargest: [60, 50, 40, 30, 20, 10]
      >>> nsmallest: [10, 20, 30, 40, 50, 60]

      方法三(使用heapify):

    def heapsort(list):
        heapq.heapify(list)
        heap = []
    
        while(list):
            heap.append(heapq.heappop(list))
            
        li[:] = heap
        print (li)
            
    if __name__ == "__main__":
        li = [30,40,60,10,20,50]
        heapsort(li)

      >>> [10, 20, 30, 40, 50, 60]

    堆在优先级队列中的应用

      需求:实现任务的添加,删除(相当于任务的执行),修改任务优先级

    pq = []                         # list of entries arranged in a heap
    entry_finder = {}               # mapping of tasks to entries
    REMOVED = '<removed-task>'      # placeholder for a removed task
    counter = itertools.count()     # unique sequence count
    
    def add_task(task, priority=0):
        'Add a new task or update the priority of an existing task'
        if task in entry_finder:
            remove_task(task)
        count = next(counter)
        entry = [priority, count, task]
        entry_finder[task] = entry
        heappush(pq, entry)
    
    def remove_task(task):
        'Mark an existing task as REMOVED.  Raise KeyError if not found.'
        entry = entry_finder.pop(task)
        entry[-1] = REMOVED
    
    def pop_task():
        'Remove and return the lowest priority task. Raise KeyError if empty.'
        while pq:
            priority, count, task = heappop(pq)
            if task is not REMOVED:
                del entry_finder[task]
                return task
        raise KeyError('pop from an empty priority queue')

      

  • 相关阅读:
    关于vue 自定义组件的写法与用法
    常用的几种监控服务器性能的Linux命令
    Web自动化测试入门
    接口测试入门
    Selenium+IDEA(java+maven+testNG)+Jenkins环境搭建
    Jmeter+ant+Jenkins环境搭建
    iframe在移动端的缩放
    CSS3的颜色渐变效果
    Hexo建博小结
    Ajax基本概念和原理
  • 原文地址:https://www.cnblogs.com/xiaobingqianrui/p/8487840.html
Copyright © 2020-2023  润新知