样本方差推导
样本方差公式$$S = frac{1}{n-1}sum_{i=1}^n(x_i-mu_i)^2$$
扩展开来得到$$S = frac{1}{n-1}[(X-frac{1}{n}X^TI_nI_n^T)^T(X-frac{1}{n}X^TI_nI_n^T)]$$
令(H = I_n - frac{1}{n}I_nI_n^T)得$$S = frac{1}{n-1}X^THX$$
其中H为等幂矩阵HH=H和中心矩阵(H_n*I_n = 0)
核PCA推导
核函数:设X是输入空间((R^n)的子集或离散子集),又F为特征空间(希尔伯特空间),如果存在一个从X到F的隐射$$phi (X):X -> F$$使得对所有x,zin X,函数K(x,z)满足条件$$K(x,z) = phi (x)ullet phi (z)$$
下面推导F投影到的主成分定义的平面,根据F样本方差的特征值分解得(为推导方便去掉前面的((frac{1}{n-1}))$$F^THFV_i = lambda _i V_i$$由于H为等逆矩阵,则$$F^THHFV_i = lambda _i V_i$$
由于想得到F很难,我们换一种思路将求F转移求K上,根据AA^T与A^TA的关系:非零特质值相同,得到$$HFF^THU_i = lambda _iU_i $$
两边同时乘以(F^TH)得到$$F^THHFF^THU_i = lambda _iF^THU_i$$
从上式可以得到(F^THU_i)为(F^THHF)的特征向量
将(F^THU_i)进行归一化$$U_{normal} = frac{F^THU_i}{{||U_i^THFF^THU_i||}_2}$$
由于(HFF^TH = HKH = lambda _i),则$$U_{normal} = lambda ^{-frac{1}{2}}F^THU_i$$
F投影到(U_normal)定义的平面$$P = F_{center} U_{normal}$$