• [Pattern Recognition_2017]IAN: The Individual Aggregation Network for Person Search


    PDF

    总结

    这篇文章在person search end-to-end的开山之作E2E-PS的基础上,沿用faster rcnn框架并加以改进,在两个数据集(CUHK-SYSU和PRW)上都有较大改进。

    contribution

     

    论文框架如上图,基本沿用faster rcnn的框架,改进点主要有几个:

    1. 用ResNet代替VGGnet做特征提取
    2. 增加了一个center loss,使得网络减小类内差异的能力提升
      • 作者认为,利用softmax可以更好的增加网络对类间差异的判断能力,而Siamese Network或者Triplet Network的contrastive loss或者triplet loss可以更好的提升类间compactiveness。所以增加一个center loss可以提升网络的判别能力。
    3. 舍弃了dropout
      • 作者在实践中发现dropout与center loss不兼容,原因是dropout随机舍弃掉神经元,使得每次前向计算的特征都会有所不同,这使得类间的变化增大。而center loss是为了减小类间变化

    center loss

     

    center loss的定义如下图,其中是每个类的特征中心,由于对整个训练集的特征按类计算中心不可行,作者采用对每个mini-batch进行中心更新和最小化特征到对应类中心距离的方式进行,即:

     整个网络的loss就包含5个子loss,即4个fasterRCNN原本的loss和一个center loss

    实验结果

    CUHK-SYSU 数据集

    PRW数据集

  • 相关阅读:
    ES6常用语法
    @Autowired和@Resource的区别
    spring boot 引导
    Springboot 日志管理配置logback-spring.xml
    Java异常之checked与unchecked
    @Transactional(rollbackFor=Exception.class)的使用
    使用spring @Scheduled注解执行定时任务、
    Spring入门学习推荐
    Hadoop调优
    关于Flink--ProcessFunction的使用
  • 原文地址:https://www.cnblogs.com/xiaoaoran/p/11131219.html
Copyright © 2020-2023  润新知