• 爬虫性能相关


    爬虫信息相关

    这里我们通过请求网页例子来一步步理解爬虫性能

    当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环

    简单的循环串行

    这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和
    代码如下:

    import requests
    
    url_list = [
        'http://www.baidu.com',
        'http://www.pythonsite.com',
        'http://www.cnblogs.com/'
    ]
    
    for url in url_list:
        result = requests.get(url)
        print(result.text)

    通过线程池

    通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多

    import requests
    from concurrent.futures import ThreadPoolExecutor
    
    def fetch_request(url):
        result = requests.get(url)
        print(result.text)
    
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
        'http://www.cnblogs.com/'
    ]
    pool = ThreadPoolExecutor(10)
    
    for url in url_list:
        #去线程池中获取一个线程,线程去执行fetch_request方法
        pool.submit(fetch_request,url)
    
    pool.shutdown(True)

    线程池+回调函数

    这里定义了一个回调函数callback

    from concurrent.futures import ThreadPoolExecutor
    import requests
    
    
    def fetch_async(url):
        response = requests.get(url)
    
        return response
    
    
    def callback(future):
        print(future.result().text)
    
    
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
        'http://www.cnblogs.com/'
    ]
    
    pool = ThreadPoolExecutor(5)
    
    for url in url_list:
        v = pool.submit(fetch_async,url)
        #这里调用回调函数
        v.add_done_callback(callback)
    
    pool.shutdown()

    通过进程池

    通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好

    import requests
    from concurrent.futures import ProcessPoolExecutor
    
    def fetch_request(url):
        result = requests.get(url)
        print(result.text)
    
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
        'http://www.cnblogs.com/'
    ]
    pool = ProcessPoolExecutor(10)
    
    for url in url_list:
        #去进程池中获取一个线程,子进程程去执行fetch_request方法
        pool.submit(fetch_request,url)
    
    pool.shutdown(True)

    进程池+回调函数

    这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源

    from concurrent.futures import ProcessPoolExecutor
    import requests
    
    
    def fetch_async(url):
        response = requests.get(url)
    
        return response
    
    
    def callback(future):
        print(future.result().text)
    
    
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
        'http://www.cnblogs.com/'
    ]
    
    pool = ProcessPoolExecutor(5)
    
    for url in url_list:
        v = pool.submit(fetch_async, url)
        # 这里调用回调函数
        v.add_done_callback(callback)
    
    pool.shutdown()

    主流的单线程实现并发的几种方式

    1. asyncio
    2. gevent
    3. Twisted
    4. Tornado

    下面分别是这四种代码的实现例子:

    asyncio例子1:

    import asyncio
    
    
    @asyncio.coroutine #通过这个装饰器装饰
    def func1():
        print('before...func1......')
        # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep
        yield from asyncio.sleep(2)
        print('end...func1......')
    
    
    tasks = [func1(), func1()]
    
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.gather(*tasks))
    loop.close()

    上述的效果是同时会打印两个before的内容,然后等待2秒打印end内容
    这里asyncio并没有提供我们发送http请求的方法,但是我们可以在yield from这里构造http请求的方法。

    asyncio例子2:

    import asyncio
    
    
    @asyncio.coroutine
    def fetch_async(host, url='/'):
        print("----",host, url)
        reader, writer = yield from asyncio.open_connection(host, 80)
    
        #构造请求头内容
        request_header_content = """GET %s HTTP/1.0
    Host: %s
    
    """ % (url, host,)
        request_header_content = bytes(request_header_content, encoding='utf-8')
        #发送请求
        writer.write(request_header_content)
        yield from writer.drain()
        text = yield from reader.read()
        print(host, url, text)
        writer.close()
    
    tasks = [
        fetch_async('www.cnblogs.com', '/zhaof/'),
        fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
    ]
    
    loop = asyncio.get_event_loop()
    results = loop.run_until_complete(asyncio.gather(*tasks))
    loop.close()
    View Code

    asyncio + aiohttp 代码例子:

    import aiohttp
    import asyncio
    
    
    @asyncio.coroutine
    def fetch_async(url):
        print(url)
        response = yield from aiohttp.request('GET', url)
        print(url, response)
        response.close()
    
    
    tasks = [fetch_async('http://baidu.com/'), fetch_async('http://www.chouti.com/')]
    
    event_loop = asyncio.get_event_loop()
    results = event_loop.run_until_complete(asyncio.gather(*tasks))
    event_loop.close()
    View Code

    asyncio+requests代码例子

    import asyncio
    import requests
    
    
    @asyncio.coroutine
    def fetch_async(func, *args):
        loop = asyncio.get_event_loop()
        future = loop.run_in_executor(None, func, *args)
        response = yield from future
        print(response.url, response.content)
    
    
    tasks = [
        fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
        fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
    ]
    
    loop = asyncio.get_event_loop()
    results = loop.run_until_complete(asyncio.gather(*tasks))
    loop.close()
    View Code

    gevent+requests代码例子

    import gevent
    
    import requests
    from gevent import monkey
    
    monkey.patch_all()
    
    
    def fetch_async(method, url, req_kwargs):
        print(method, url, req_kwargs)
        response = requests.request(method=method, url=url, **req_kwargs)
        print(response.url, response.content)
    
    # ##### 发送请求 #####
    gevent.joinall([
        gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
        gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
        gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
    ])
    
    # ##### 发送请求(协程池控制最大协程数量) #####
    # from gevent.pool import Pool
    # pool = Pool(None)
    # gevent.joinall([
    #     pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
    #     pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    #     pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
    # ])
    View Code

    grequests代码例子
    这个是讲requests+gevent进行了封装

    import grequests
    
    
    request_list = [
        grequests.get('http://httpbin.org/delay/1', timeout=0.001),
        grequests.get('http://fakedomain/'),
        grequests.get('http://httpbin.org/status/500')
    ]
    
    
    # ##### 执行并获取响应列表 #####
    # response_list = grequests.map(request_list)
    # print(response_list)
    
    
    # ##### 执行并获取响应列表(处理异常) #####
    # def exception_handler(request, exception):
    # print(request,exception)
    #     print("Request failed")
    
    # response_list = grequests.map(request_list, exception_handler=exception_handler)
    # print(response_list)

    twisted代码例子

    #getPage相当于requets模块,defer特殊的返回值,rector是做事件循环
    from twisted.web.client import getPage, defer
    from twisted.internet import reactor
    
    def all_done(arg):
        reactor.stop()
    
    def callback(contents):
        print(contents)
    
    deferred_list = []
    
    url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
    for url in url_list:
        deferred = getPage(bytes(url, encoding='utf8'))
        deferred.addCallback(callback)
        deferred_list.append(deferred)
    #这里就是进就行一种检测,判断所有的请求知否执行完毕
    dlist = defer.DeferredList(deferred_list)
    dlist.addBoth(all_done)
    
    reactor.run()

    tornado代码例子

    from tornado.httpclient import AsyncHTTPClient
    from tornado.httpclient import HTTPRequest
    from tornado import ioloop
    
    
    def handle_response(response):
        """
        处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
        :param response: 
        :return: 
        """
        if response.error:
            print("Error:", response.error)
        else:
            print(response.body)
    
    
    def func():
        url_list = [
            'http://www.baidu.com',
            'http://www.bing.com',
        ]
        for url in url_list:
            print(url)
            http_client = AsyncHTTPClient()
            http_client.fetch(HTTPRequest(url), handle_response)
    
    
    ioloop.IOLoop.current().add_callback(func)
    ioloop.IOLoop.current().start()
    View Code
  • 相关阅读:
    for memory long term update
    Tomcat 部署 Jenkins (Linux系统)
    Linux新增硬盘
    jenkins常见问题
    Linux安装JDk
    Jenkins入门(一)
    主播必备工具Bongo Cat!
    Docker常用命令
    Docker二进制部署
    golang中for语句详解
  • 原文地址:https://www.cnblogs.com/xiao-xue-di/p/10250779.html
Copyright © 2020-2023  润新知