• [BZOJ2154]Crash的数字表格


    [BZOJ2154]Crash的数字表格

    试题描述

    今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

    输入

    输入的第一行包含两个正整数,分别表示N和M。

    输出

    输出一个正整数,表示表格中所有数的和mod 20101009的值。

    输入示例

    4 5

    输出示例

    122

    数据规模及约定

    100%的数据满足N, M ≤ 10^7。

    题解

    把最小公倍数转化成最大公约数,因为我们比较熟悉最大公约数。

    然后考虑枚举 gcd(x, y)

    于是

    于是分两个 sqrt(n) 分别计算 f(n, m) 和 ans 就好了。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    
    const int BufferSize = 1 << 16;
    char buffer[BufferSize], *Head, *Tail;
    inline char Getchar() {
    	if(Head == Tail) {
    		int l = fread(buffer, 1, BufferSize, stdin);
    		Tail = (Head = buffer) + l;
    	}
    	return *Head++;
    }
    int read() {
    	int x = 0, f = 1; char c = Getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
    	return x * f;
    }
    
    #define maxn 10000001
    #define MOD 20101009
    #define div4 15075757
    #define LL long long
    
    int n, m, prime[maxn], cp, mu[maxn], sum[maxn], tot[maxn];
    bool vis[maxn];
    void init() {
    	mu[1] = 1; sum[1] = 1;
    	for(int i = 2; i <= n; i++) {
    		if(!vis[i]) prime[++cp] = i, mu[i] = MOD - 1;
    		for(int j = 1; i * prime[j] <= n && j <= cp; j++) {
    			vis[i*prime[j]] = 1;
    			if(i % prime[j] == 0){ mu[i*prime[j]] = 0; break; }
    			mu[i*prime[j]] = -mu[i];
    			if(mu[i*prime[j]] < 0) mu[i*prime[j]] += MOD;
    		}
    		sum[i] = sum[i-1] + (LL)mu[i] * i % MOD * i % MOD;
    		if(sum[i] >= MOD) sum[i] -= MOD;
    	}
    	for(int i = 1; i <= n; i++) {
    		tot[i] = tot[i-1] + i;
    		if(tot[i] >= MOD) tot[i] -= MOD;
    	}
    	return ;
    }
    
    int f(int n, int m) {
    	int ans = 0;
    	for(int i = 1, lst; i <= n; i = lst + 1) {
    		lst = min(n / (n / i), m / (m / i));
    		ans += (LL)(n / i + 1) * (n / i) % MOD * (m / i + 1) % MOD * (m / i) % MOD * (tot[lst] - tot[i-1] + MOD) % MOD;
    		if(ans >= MOD) ans -= MOD;
    	}
    	return ans;
    }
    
    int main() {
    	n = read(); m = read(); int ans = 0;
    	if(n > m) swap(n, m);
    	init();
    	for(int i = 1, lst; i <= n; i = lst + 1) {
    		lst = min(n / (n / i), m / (m / i));
    		ans += (LL)f(n / i, m / i) * (sum[lst] - sum[i-1] + MOD) % MOD;
    		if(ans >= MOD) ans -= MOD;
    	}
    	printf("%lld
    ", (LL)ans * div4 % MOD);
    	
    	return 0;
    }
    

    UPD:

    其实 μ(t)·t2 的前缀和可以杜教筛的。把 μ(t)·t2 和 t2 狄利克雷卷积一下,得到

    于是就可以扩大数据范围了。。。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    
    int read() {
    	int x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 1000000
    #define MOD 998244353
    #define div6 166374059
    #define LL long long
    
    int prime[maxn], cp, mu[maxn], smu[maxn];
    bool vis[maxn];
    void init() {
    	mu[1] = 1;
    	for(int i = 2; i < maxn; i++) {
    		if(!vis[i]) prime[++cp] = i, mu[i] = -1;
    		for(int j = 1; i * prime[j] < maxn && j <= cp; j++) {
    			vis[i*prime[j]] = 1;
    			if(i % prime[j] == 0){ mu[i*prime[j]] = 0; break; }
    			mu[i*prime[j]] = -mu[i];
    		}
    	}
    	for(int i = 1; i < maxn; i++) {
    		mu[i] *= (LL)i * i % MOD;
    		if(mu[i] < 0) mu[i] += MOD;
    		smu[i] = smu[i-1] + mu[i];
    		if(smu[i] >= MOD) smu[i] -= MOD;
    	}
    	return ;
    }
    
    #define MODs 1000007
    
    struct Hash {
    	int ToT, head[MODs], nxt[maxn], val[maxn], sum[maxn];
    	
    	Hash() { ToT = 0; memset(head, 0, sizeof(head)); }
    	
    	int Find(int x) {
    		int u = x % MODs;
    		for(int e = head[u]; e; e = nxt[e]) if(val[e] == x) return sum[e];
    		return -1;
    	}
    	void Insert(int x, int v) {
    		int u = x % MODs;
    		nxt[++ToT] = head[u]; val[ToT] = x; sum[ToT] = v; head[u] = ToT;
    		return ;
    	}
    } hh;
    
    int sum_sqr(int n) { return (LL)n * (n + 1) % MOD * (n << 1 | 1) % MOD * div6 % MOD; }
    int Sum(int n) {
    	if(n < maxn) return smu[n];
    	if(hh.Find(n) >= 0) return hh.Find(n);
    	int sum = 1;
    	for(int i = 2, lst; i <= n; i = lst + 1) {
    		lst = n / (n / i);
    		sum -= (LL)(sum_sqr(lst) - sum_sqr(i - 1) + MOD) * Sum(n / i) % MOD;
    		if(sum < 0) sum += MOD;
    	}
    	hh.Insert(n, sum);
    	return sum;
    }
    
    int sum_num(int n) { return ((LL)n * (n + 1) >> 1) % MOD; }
    int calc(int n, int m) { return ((LL)(n + 1) * n >> 1) % MOD * (((LL)(m + 1) * m >> 1) % MOD) % MOD; }
    int f(int n, int m) {
    	int ans = 0;
    	for(int i = 1, lst; i <= n; i = lst + 1) {
    		lst = min(n / (n / i), m / (m / i));
    		ans += (LL)(sum_num(lst) - sum_num(i - 1) + MOD) * calc(n / i, m / i) % MOD;
    		if(ans >= MOD) ans -= MOD;
    	}
    	return ans;
    }
    
    int main() {
    	init();
    	
    	int n = read(), m = read();
    	if(n > m) swap(n, m);
    	
    	int ans = 0;
    	for(int i = 1, lst; i <= n; i = lst + 1) {
    		lst = min(n / (n / i), m / (m / i));
    		ans += (LL)(Sum(lst) - Sum(i - 1) + MOD) * f(n / i, m / i) % MOD;
    		if(ans >= MOD) ans -= MOD;
    	}
    	
    	printf("%d
    ", ans);
    	
    	return 0;
    }
    
  • 相关阅读:
    Centos7 Apache 2.4.18编译安装
    Centos7 mysql-community-5.7.11编译安装
    Centos7 安装MPlayer过程详解
    Vmware虚拟机克隆的网卡问题
    虚拟机VMware新增硬盘无法识别问题
    python推导式
    Python迭代器和生成器
    Python装饰器
    Python函数初识二
    Python函数初识
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/7109499.html
Copyright © 2020-2023  润新知