[POJ1068]Parencodings
试题描述
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
输入
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
输出
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
输入示例
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
输出示例
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
数据规模及约定
见“输入”
题解
用个栈胡乱搞搞。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); } return x * f; } #define maxn 50 int n, S[maxn], top; int main() { int T = read(); while(T--) { n = read(); int lst = 0; top = 0; for(int i = 1; i <= n; i++) { int x = read(); for(int j = 1; j <= top; j++) S[j] += x - lst; for(int j = x - lst; j; j--) S[++top] = j; printf("%d%c", S[top--], i < n ? ' ' : ' '); lst = x; } } return 0; }