[BZOJ2502]清理雪道
试题描述
滑雪场坐落在FJ省西北部的若干座山上。
从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向。
你的团队负责每周定时清理雪道。你们拥有一架直升飞机,每次飞行可以从总部带一个人降落到滑雪场的某个地点,然后再飞回总部。从降落的地点出发,这个人可以顺着斜坡向下滑行,并清理他所经过的雪道。
由于每次飞行的耗费是固定的,为了最小化耗费,你想知道如何用最少的飞行次数才能完成清理雪道的任务。
输入
输入文件的第一行包含一个整数n (2 <= n <= 100) – 代表滑雪场的地点的数量。接下来的n行,描述1~n号地点出发的斜坡,第i行的第一个数为mi (0 <= mi < n) ,后面共有mi个整数,由空格隔开,每个整数aij互不相同,代表从地点i下降到地点aij的斜坡。每个地点至少有一个斜坡与之相连。
输出
输出文件的第一行是一个整数k – 直升飞机的最少飞行次数。
输入示例
8 1 3 1 7 2 4 5 1 8 1 8 0 2 6 5 0
输出示例
4
数据规模及约定
见“输入”
题解
最小费用流。从源点向入度为 0 的点连容量无穷费用为 0 的有向边,从出度为 0 的点向汇点连容量无穷费用为 0 的有向边;然后对于这张 DAG 的每条有向边,拆分成两条同方向的有向边,一条容量为 1 费用负无穷,另一条容量无穷费用为 0. 因为我们需要强制每条边至少经过一次,所以要将其中一条的费用设成负无穷。
跑一边最小费用流(注意不是最大流)即可。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); } return x * f; } #define maxn 110 #define maxm 40010 #define oo 2147483647 #define inf 100000 #define LL long long struct Edge { int from, to, flow, cost; } ; struct ZKW { int n, m, s, t, head[maxn], next[maxm]; LL cost, ans; Edge es[maxm]; bool inq[maxn]; LL d[maxn]; bool vis[maxn]; void init(int nn) { n = nn; m = 0; memset(head, -1, sizeof(head)); return ; } void AddEdge(int a, int b, int c, int d) { es[m] = (Edge){ a, b, c, d }; next[m] = head[a]; head[a] = m++; es[m] = (Edge){ b, a, 0, -d }; next[m] = head[b]; head[b] = m++; return ; } bool BFS() { memset(inq, 0, sizeof(inq)); for(int i = 1; i <= n; i++) d[i] = oo; deque <int> Q; Q.push_front(t); inq[t] = 1; d[t] = 0; while(!Q.empty()) { int u = Q.front(); Q.pop_front(); inq[u] = 0; for(int i = head[u]; i != -1; i = next[i]) { Edge& e = es[i^1]; if(e.flow && d[e.from] > d[u] + e.cost) { d[e.from] = d[u] + e.cost; if(!inq[e.from]) { inq[e.from] = 1; if(Q.empty() || d[e.from] <= d[Q.front()]) Q.push_front(e.from); else Q.push_back(e.from); } } } } if(d[s] == oo) return 0; for(int i = 0; i < m; i++) es[i].cost += d[es[i].to] - d[es[i].from]; cost += d[s]; return 1; } int DFS(int u, int a) { if(u == t || !a){ ans += cost * a; return a; } vis[u] = 1; int flow = 0, f; for(int i = head[u]; i != -1; i = next[i]) { Edge& e = es[i]; if(!vis[e.to] && e.flow && !e.cost && (f = DFS(e.to, min(a, e.flow)))) { a -= f; flow += f; e.flow -= f; es[i^1].flow += f; if(!a) return flow; } } return flow; } int MaxFlow(int ss, int tt) { s = ss; t = tt; int flow = 0, tmp; while(BFS()) { if(cost >= 0) break; do { memset(vis, 0, sizeof(vis)); tmp = DFS(s, oo); flow += tmp; } while(tmp); } return flow; } } sol; int in[maxn], out[maxn]; int main() { int n = read(), s = n + 1, t = s + 1; sol.init(n + 2); for(int i = 1; i <= n; i++) { int m = read(); while(m--) { int a = read(); in[a]++; out[i]++; sol.AddEdge(i, a, 1, -inf); sol.AddEdge(i, a, oo, 0); } } for(int i = 1; i <= n; i++) { if(!in[i]) sol.AddEdge(s, i, oo, 0); if(!out[i]) sol.AddEdge(i, t, oo, 0); } printf("%d ", sol.MaxFlow(s, t)); return 0; }