Hbase和Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。HBase是Hadoop的数据库,一个分布式、可扩展、大数据的存储。单个的从字面意思上或许很难看出二者的区别,别急,下面我们就对二者做个详细的介绍。
两者的特点
Hive帮助熟悉SQL的人运行MapReduce任务。因为它是JDBC兼容的,同时,它也能够和现存的SQL工具整合在一起。运行Hive查询会花费很长时间,因为它会默认遍历表中所有的数据。虽然有这样的缺点,一次遍历的数据量可以通过Hive的分区机制来控制。分区允许在数据集上运行过滤查询,这些数据集存储在不同的文件夹内,查询的时候只遍历指定文件夹(分区)中的数据。这种机制可以用来,例如,只处理在某一个时间范围内的文件,只要这些文件名中包括了时间格式。
HBase通过存储key/value来工作。它支持四种主要的操作:增加或者更新行,查看一个范围内的cell,获取指定的行,删除指定的行、列或者是列的版本。版本信息用来获取历史数据(每一行的历史数据可以被删除,然后通过Hbase compactions就可以释放出空间)。虽然HBase包括表格,但是schema仅仅被表格和列簇所要求,列不需要schema。Hbase的表格包括增加/计数功能。
限制
Hive目前不支持更新操作。另外,由于hive在hadoop上运行批量操作,它需要花费很长的时间,通常是几分钟到几个小时才可以获取到查询的结果。Hive必须提供预先定义好的schema将文件和目录映射到列,并且Hive与ACID不兼容。
HBase查询是通过特定的语言来编写的,这种语言需要重新学习。类SQL的功能可以通过Apache Phonenix实现,但这是以必须提供schema为代价的。另外,Hbase也并不是兼容所有的ACID特性,虽然它支持某些特性。最后但不是最重要的–为了运行Hbase,Zookeeper是必须的,zookeeper是一个用来进行分布式协调的服务,这些服务包括配置服务,维护元信息和命名空间服务。
应用场景
Hive适合用来对一段时间内的数据进行分析查询,例如,用来计算趋势或者网站的日志。Hive不应该用来进行实时的查询。因为它需要很长时间才可以返回结果。
Hbase非常适合用来进行大数据的实时查询。Facebook用Hbase进行消息和实时的分析。它也可以用来统计Facebook的连接数。
总结
Hive和Hbase是两种基于Hadoop的不同技术–Hive是一种类SQL的引擎,并且运行MapReduce任务,Hbase是一种在Hadoop之上的NoSQL 的Key/vale数据库。当然,这两种工具是可以同时使用的。就像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实时查询,数据也可以从Hive写到Hbase,设置再从Hbase写回Hive