• Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)


    题意:

    已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值。

    细节:

    没有细节???感觉没有???

    分析:

    听说有两种方法!!!
    好吧实际上是等价的只是看似状态不同罢了~~~ QAQ

    Round1:枚举当前点取或不取,当前点 i 取的话那么在前 KK 的数中必须要选择一个数字点 k 不取并且将 k+1i 做为新的区间,最后取最优的 k 作为转移记录下来,并且其满足最有子结构。
    所以状态就是:dp[i][0/1] 表示以 i 为结尾是否取 i 最大的区间
    自然转移就是:
    dp [ i ][ 0 ] = max ( dp [ i-1 ][ 0 ] , dp [ i-1 ][ 1 ] )
    dp [ i ][ 1 ] = max ( dp [ i ][ 1 ] , dp [ k ][ 0 ] + sum [ i ] - sum [ k ]) ( i-KK ≤ k ≤ i - 1 )

    Round2:好吧还有一种思路直接考虑那个断点 k ,并且不去这个断点。
    状态就变成了: f [ i ] 表示以 i 为结尾且必须取 i 的最大价值。
    根据思路转移个人感觉玄学:
    f [ i ] = max ( f [ i ] , f [ k -1 ] + sum [ i ] - sum [ k ] ) ( i-KK ≤ k ≤ i - 1 )
    其中的 sum [ ] 都表示序列的前缀和,同上。

    好吧事实总不尽人意,看一眼数据范围顿时吸一口氧气,但是无论怎样都是 T L E ,好像是废话,活活的 N × N 的算法啊。但是观察观察方程, 比如 Round 2 中的我们使用一种高级的数学方法——加法交换律!!!
    就能把式子变成这个样子 —— f [ i ] = max ( f [ k -1 ] - sum [ k ] ) + sum [ i ]

    这是时候你就应该大叫一声这是定区间求最值啊,然后你想怎么做都可以了吧,线段树权值、树状数组之类的 好吧我们还是正常一点还是不去惹 log n 的时间复杂万一卡常呢,最后你就会明智的选择单调队列啦啦啦啦~~~(Ps:单调递减,咳咳)

    其实某些大佬闭着眼睛不用想都可以,比如 c l yy j ql c t,啦啦啦

    代码的荣耀时刻:

    Round1:
    
    #include<bits/stdc++.h>
    #define LL long long
    #define MAXN 100010
    using namespace std;
    
    LL f[MAXN], dp[MAXN][2];
    int que[MAXN], n, m;
    
    int main(){
    	scanf("%d%d", &n, &m);
    	for (int i=1; i<=n; i++){
    		LL x;
    		scanf("%lld", &x);
    		f[i]=f[i-1]+x;
    	}
    	int tail=1, head=1;
    	que[1]=0;
    	for (int i=1; i<=n; i++) {
    		dp[i][0]=max(dp[i-1][1], dp[i-1][0]);
    		while (head<=tail && que[head]<max(0, i-m)) head++;
    		dp[i][1]=dp[que[head]][0]-f[que[head]]+f[i];
    		while (head<=tail && dp[que[tail]][0]-f[que[tail]]<=dp[i][0]-f[i]) tail--;
    		que[++tail]=i;
    	}
    	printf("%lld
    ", max(dp[n][1], dp[n][0]));
    	return 0;
    }
    
    Round2:
    
    #include<bits/stdc++.h>
    #define LL long long
    using namespace std;
    const int MAXN=100010;
    
    int n, k, que[MAXN];
    LL f[MAXN], dp[MAXN];
    
    int main(){
    	scanf("%d%d", &n, &k);
    	for (int i=1; i<=n; i++) {
    		LL x;
    		scanf("%lld", &x);
    		f[i]=f[i-1]+x;
    	}
    	int head=1, tail=1;
    	for (int i=1; i<=n; i++){
    		while (head<=tail && que[head]<max(i-k, 0)) ++head;
    		dp[i]=dp[max(que[head]-1, 0)]+f[i]-f[que[head]];
    		while (head<=tail && dp[max(que[tail]-1, 0)]-f[que[tail]]<=dp[i-1]-f[i]) --tail;
    		que[++tail]=i;
    	}
    	printf("%lld
    ", dp[n]);
    	return 0;
    }
    

    小结:

    其实小蒟蒻觉得像这种类似单调队列优化 1 D / 1 D 动态规划的情况,难在最初始状态思考以及转移,优化过程以及代码实现可以多练体进行熟练。

  • 相关阅读:
    基础1-安装zookeeper
    Logstash-input-file 配置
    Logstash-input-rabbitmq 配置
    EF 部分更新 忽略NULL
    CoreApi 3.1
    logstash基于RabbitMQ的输入配置
    史上最详细的linux三剑客讲解-grep-awk-sed
    CDN概述
    HttpDNS和传统DNS的区别
    Linux性能分析工具之----mpstat
  • 原文地址:https://www.cnblogs.com/xiannvzuimei/p/9979119.html
Copyright © 2020-2023  润新知