function [confmatrix] = cfmatrix(actual, predict, classlist, per) % CFMATRIX calculates the confusion matrix for any prediction % algorithm that generates a list of classes to which the test % feature vectors are assigned % % Outputs: confusion matrix % % Actual Classes % p n % ___|_____|______| % Predicted p'| | | % Classes n'| | | % % Inputs: % 1. actual / 2. predict % The inputs provided are the 'actual' classes vector % and the 'predict'ed classes vector. The actual classes are the classes % to which the input feature vectors belong. The predicted classes are the % class to which the input feature vectors are predicted to belong to, % based on a prediction algorithm. % The length of actual class vector and the predicted class vector need to % be the same. If they are not the same, an error message is displayed. % 3. classlist % The third input provides the list of all the classes {p,n,...} for which % the classification is being done. All classes are numbers. % 4. per = 1/0 (default = 0) % This parameter when set to 1 provides the values in the confusion matrix % as percentages. The default provides the values in numbers. % % Example: % >> a = [ 1 2 3 1 2 3 1 1 2 3 2 1 1 2 3]; % >> b = [ 1 2 3 1 2 3 1 1 1 2 2 1 2 1 3]; % >> Cf = cfmatrix(a, b); % % [Avinash Uppuluri: avinash_uv@yahoo.com: Last modified: 08/21/08] % If classlist not entered: make classlist equal to all % unique elements of actual if (nargin < 2) error('Not enough input arguments.'); elseif (nargin == 2) classlist = unique(actual); % default values from actual per = 0; % default is numbers and input 1 for percentage elseif (nargin == 3) per = 0; % default is numbers and input 1 for percentage end if (length(actual) ~= length(predict)) error('First two inputs need to be vectors with equal size.'); elseif ((size(actual,1) ~= 1) && (size(actual,2) ~= 1)) error('First input needs to be a vector and not a matrix'); elseif ((size(predict,1) ~= 1) && (size(predict,2) ~= 1)) error('Second input needs to be a vector and not a matrix'); end format short g; n_class = length(classlist); line_two = '----------'; line_three = '_________|'; for i = 1:n_class obind_class_i = find(actual == classlist(i)); prind_class_i = find(predict == classlist(i)); confmatrix(i,i) = length(intersect(obind_class_i,prind_class_i)); for j = 1:n_class %if (j ~= i) if (j < i) % observed j predicted i confmatrix(i,j) = length(find(actual(prind_class_i) == classlist(j))); % observed i predicted j confmatrix(j,i) = length(find(predict(obind_class_i) == classlist(j))); end end line_two = strcat(line_two,'---',num2str(classlist(i)),'-----'); line_three = strcat(line_three,'__________'); end if (per == 1) confmatrix = (confmatrix ./ length(actual)).*100; end % output to screen disp('------------------------------------------'); disp(' Actual Classes'); disp(line_two); disp('Predicted| '); disp(' Classes| '); disp(line_three); for i = 1:n_class temps = sprintf(' %d ',i); for j = 1:n_class temps = strcat(temps,sprintf(' | %2.1f ',confmatrix(i,j))); end disp(temps); clear temps end disp('------------------------------------------');
调用:
a=importdata('E:\\actual_label.txt'); b=importdata('E:\\predict_label.txt'); Cf = cfmatrix(a, b)