• 多线程ForkJoin-分治思想


    一、ForkJoin

    ForkJoin是由JDK1.7后提供多线并发处理框架。ForkJoin的框架的基本思想是分而治之。什么是分而治之?分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总。相应的ForkJoin将复杂的计算当做一个任务。而分解的多个计算则是当做一个子任务。

    二、ForkJoin的使用

    使用ForkJoin框架,需要创建一个ForkJoin的任务,而ForkJoinTask是一个抽象类,我们不需要去继承ForkJoinTask进行使用。因为ForkJoin框架为我们提供了RecursiveAction和RecursiveTask。我们只需要继承ForkJoin为我们提供的抽象类的其中一个并且实现compute方法。

    关键代码为:

    // 多线程处理(线程数默认等于CPU核心数量)
            ForkJoinPool forkJoinPool = new ForkJoinPool();
            AnnexImportTask task = new AnnexImportTask(annexList, provider,annexSecretkeyDaoImp, 0, annexList.size());
            forkJoinPool.submit(task);
            try {
                while(forkJoinPool.getActiveThreadCount() != 0) {
                    Thread.currentThread().sleep(100);
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
            // 关闭线程池
            forkJoinPool.shutdown();
    AnnexImportTask
    public class AnnexImportTask extends RecursiveAction {
    
        private static final long serialVersionUID = 10000000000000L;
    
        protected static final Logger logger = LoggerFactory.getLogger(AnnexImportTask.class);
    
        private List<Annex> annexList;
        
        private BlobContainerProvider provider;
        
        private AnnexSecretkeyDaoImp annexSecretkeyDaoImp;
        
        //单个线程中,可执行的任务队列数最大值
        private int threshold = 1000;
        
        int start;
        
        int end;
        
        //构造方法传参
        public AnnexImportTask(List<Annex> annexList,BlobContainerProvider provider, AnnexSecretkeyDaoImp annexSecretkeyDaoImp,int start, int end) {
            this.annexList = annexList;
            this.provider = provider;
            this.annexSecretkeyDaoImp = annexSecretkeyDaoImp;
            this.start = start;
            this.end = end;
        }
    
        //重写compute方法
        @Override
        protected void compute() {
            if (end - start < threshold) {
                for (int i = start; i < end; i++) {
                    importAnnex(annexList.get(i));//子任务执行的具体操作
                }
            } else {
                int middle = (start + end) / 2;
                AnnexImportTask left = new AnnexImportTask(annexList, provider, annexSecretkeyDaoImp,start, middle);
                AnnexImportTask right = new AnnexImportTask(annexList, provider, annexSecretkeyDaoImp, middle, end);
                left.fork();
                right.fork();
            }
        }
    
        //具体业务代码,本例子为实际场景中的上传附件
        private void importAnnex(Annex e) {
            String secretkey = "0";
            InputStream binaryStream;
            InputStream encodingToStream;
            GamsAnnexSecretkey gamsAnnexSecretkey;
            if (e.getAnnexData() != null && e.getBizPath() != null) {
                try {
                    binaryStream = ((oracle.sql.BLOB) e.getAnnexData()).getBinaryStream();
                    EncryptUtil.setKey(secretkey);
                    encodingToStream = EncryptUtil.encodingToStream(binaryStream);
                    // 保存到文件服务器
                    provider.getContainer(e.getBizPath()).uploadFromStream(e.getFilePath(), encodingToStream);
                    // 保存加密的秘钥
                    gamsAnnexSecretkey = new GamsAnnexSecretkey(UUID.randomUUID(), DataType.toUUID(e.getId()), secretkey == "0" ? 0 : 1, secretkey);
                    annexSecretkeyDaoImp.save(gamsAnnexSecretkey);
                } catch (Exception ex) {
                    logger.info(ex.getMessage());
                }
            }
        }
    }
    AnnexImportTask

    三、RecursiveTask和RecursiveAction区别

    RecursiveTask

    通过源码的查看我们可以发现RecursiveTask在进行exec之后会使用一个result的变量进行接受返回的结果。而result返回结果类型是通过泛型进行传入。也就是说RecursiveTask执行后是有返回结果。
    附上源码:
    源码中有斐波拉切数列的示例代码:Fibonacci 
    /*
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    /*
     *
     *
     *
     *
     *
     * Written by Doug Lea with assistance from members of JCP JSR-166
     * Expert Group and released to the public domain, as explained at
     * http://creativecommons.org/publicdomain/zero/1.0/
     */
    
    package java.util.concurrent;
    
    /**
     * A recursive result-bearing {@link ForkJoinTask}.
     *
     * <p>For a classic example, here is a task computing Fibonacci numbers:
     *
     *  <pre> {@code
     * class Fibonacci extends RecursiveTask<Integer> {
     *   final int n;
     *   Fibonacci(int n) { this.n = n; }
     *   Integer compute() {
     *     if (n <= 1)
     *       return n;
     *     Fibonacci f1 = new Fibonacci(n - 1);
     *     f1.fork();
     *     Fibonacci f2 = new Fibonacci(n - 2);
     *     return f2.compute() + f1.join();
     *   }
     * }}</pre>
     *
     * However, besides being a dumb way to compute Fibonacci functions
     * (there is a simple fast linear algorithm that you'd use in
     * practice), this is likely to perform poorly because the smallest
     * subtasks are too small to be worthwhile splitting up. Instead, as
     * is the case for nearly all fork/join applications, you'd pick some
     * minimum granularity size (for example 10 here) for which you always
     * sequentially solve rather than subdividing.
     *
     * @since 1.7
     * @author Doug Lea
     */
    public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
        private static final long serialVersionUID = 5232453952276485270L;
    
        /**
         * The result of the computation.
         */
        V result;
    
        /**
         * The main computation performed by this task.
         * @return the result of the computation
         */
        protected abstract V compute();
    
        public final V getRawResult() {
            return result;
        }
    
        protected final void setRawResult(V value) {
            result = value;
        }
    
        /**
         * Implements execution conventions for RecursiveTask.
         */
        protected final boolean exec() {
            result = compute();
            return true;
        }
    
    }
    RecursiveTask

    RecursiveAction

    RecursiveAction在exec后是不会保存返回结果,因此RecursiveAction与RecursiveTask区别在与RecursiveTask是有返回结果而RecursiveAction是没有返回结果。
    附上源码:
    源码中有排序示例代码:SortTask ;平方和示例代码:sumOfSquares
    /*
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    /*
     *
     *
     *
     *
     *
     * Written by Doug Lea with assistance from members of JCP JSR-166
     * Expert Group and released to the public domain, as explained at
     * http://creativecommons.org/publicdomain/zero/1.0/
     */
    
    package java.util.concurrent;
    
    /**
     * A recursive resultless {@link ForkJoinTask}.  This class
     * establishes conventions to parameterize resultless actions as
     * {@code Void} {@code ForkJoinTask}s. Because {@code null} is the
     * only valid value of type {@code Void}, methods such as {@code join}
     * always return {@code null} upon completion.
     *
     * <p><b>Sample Usages.</b> Here is a simple but complete ForkJoin
     * sort that sorts a given {@code long[]} array:
     *
     *  <pre> {@code
     * static class SortTask extends RecursiveAction {
     *   final long[] array; final int lo, hi;
     *   SortTask(long[] array, int lo, int hi) {
     *     this.array = array; this.lo = lo; this.hi = hi;
     *   }
     *   SortTask(long[] array) { this(array, 0, array.length); }
     *   protected void compute() {
     *     if (hi - lo < THRESHOLD)
     *       sortSequentially(lo, hi);
     *     else {
     *       int mid = (lo + hi) >>> 1;
     *       invokeAll(new SortTask(array, lo, mid),
     *                 new SortTask(array, mid, hi));
     *       merge(lo, mid, hi);
     *     }
     *   }
     *   // implementation details follow:
     *   static final int THRESHOLD = 1000;
     *   void sortSequentially(int lo, int hi) {
     *     Arrays.sort(array, lo, hi);
     *   }
     *   void merge(int lo, int mid, int hi) {
     *     long[] buf = Arrays.copyOfRange(array, lo, mid);
     *     for (int i = 0, j = lo, k = mid; i < buf.length; j++)
     *       array[j] = (k == hi || buf[i] < array[k]) ?
     *         buf[i++] : array[k++];
     *   }
     * }}</pre>
     *
     * You could then sort {@code anArray} by creating {@code new
     * SortTask(anArray)} and invoking it in a ForkJoinPool.  As a more
     * concrete simple example, the following task increments each element
     * of an array:
     *  <pre> {@code
     * class IncrementTask extends RecursiveAction {
     *   final long[] array; final int lo, hi;
     *   IncrementTask(long[] array, int lo, int hi) {
     *     this.array = array; this.lo = lo; this.hi = hi;
     *   }
     *   protected void compute() {
     *     if (hi - lo < THRESHOLD) {
     *       for (int i = lo; i < hi; ++i)
     *         array[i]++;
     *     }
     *     else {
     *       int mid = (lo + hi) >>> 1;
     *       invokeAll(new IncrementTask(array, lo, mid),
     *                 new IncrementTask(array, mid, hi));
     *     }
     *   }
     * }}</pre>
     *
     * <p>The following example illustrates some refinements and idioms
     * that may lead to better performance: RecursiveActions need not be
     * fully recursive, so long as they maintain the basic
     * divide-and-conquer approach. Here is a class that sums the squares
     * of each element of a double array, by subdividing out only the
     * right-hand-sides of repeated divisions by two, and keeping track of
     * them with a chain of {@code next} references. It uses a dynamic
     * threshold based on method {@code getSurplusQueuedTaskCount}, but
     * counterbalances potential excess partitioning by directly
     * performing leaf actions on unstolen tasks rather than further
     * subdividing.
     *
     *  <pre> {@code
     * double sumOfSquares(ForkJoinPool pool, double[] array) {
     *   int n = array.length;
     *   Applyer a = new Applyer(array, 0, n, null);
     *   pool.invoke(a);
     *   return a.result;
     * }
     *
     * class Applyer extends RecursiveAction {
     *   final double[] array;
     *   final int lo, hi;
     *   double result;
     *   Applyer next; // keeps track of right-hand-side tasks
     *   Applyer(double[] array, int lo, int hi, Applyer next) {
     *     this.array = array; this.lo = lo; this.hi = hi;
     *     this.next = next;
     *   }
     *
     *   double atLeaf(int l, int h) {
     *     double sum = 0;
     *     for (int i = l; i < h; ++i) // perform leftmost base step
     *       sum += array[i] * array[i];
     *     return sum;
     *   }
     *
     *   protected void compute() {
     *     int l = lo;
     *     int h = hi;
     *     Applyer right = null;
     *     while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
     *       int mid = (l + h) >>> 1;
     *       right = new Applyer(array, mid, h, right);
     *       right.fork();
     *       h = mid;
     *     }
     *     double sum = atLeaf(l, h);
     *     while (right != null) {
     *       if (right.tryUnfork()) // directly calculate if not stolen
     *         sum += right.atLeaf(right.lo, right.hi);
     *       else {
     *         right.join();
     *         sum += right.result;
     *       }
     *       right = right.next;
     *     }
     *     result = sum;
     *   }
     * }}</pre>
     *
     * @since 1.7
     * @author Doug Lea
     */
    public abstract class RecursiveAction extends ForkJoinTask<Void> {
        private static final long serialVersionUID = 5232453952276485070L;
    
        /**
         * The main computation performed by this task.
         */
        protected abstract void compute();
    
        /**
         * Always returns {@code null}.
         *
         * @return {@code null} always
         */
        public final Void getRawResult() { return null; }
    
        /**
         * Requires null completion value.
         */
        protected final void setRawResult(Void mustBeNull) { }
    
        /**
         * Implements execution conventions for RecursiveActions.
         */
        protected final boolean exec() {
            compute();
            return true;
        }
    
    }
    RecursiveAction

    四、ForJoin注意点

    使用ForkJoin将相同的计算任务通过多线程的进行执行。从而能提高数据的计算速度。在google的中的大数据处理框架mapreduce就通过类似ForkJoin的思想。通过多线程提高大数据的处理。但是我们需要注意:

    • 使用这种多线程带来的数据共享问题,在处理结果的合并的时候如果涉及到数据共享的问题,我们尽可能使用JDK为我们提供的并发容器。
    • 在使用JVM的时候我们要考虑OOM的问题,如果我们的任务处理时间非常耗时,并且处理的数据非常大的时候。会造成OOM。
    • ForkJoin也是通过多线程的方式进行处理任务。那么我们不得不考虑是否应该使用ForkJoin。因为当数据量不是特别大的时候,我们没有必要使用ForkJoin。因为多线程会涉及到上下文的切换。所以数据量不大的时候使用串行比使用多线程快。

    五、ForkJoin工作窃取(work-stealing)

    ForkJoin在实际使用中,也可能存在一些问题,而最常见的就是存在数据倾斜问题,即分成的每个子任务不能保证数据都同样大小。

    我们将任务进行分解成多个子任务的时候,由于子任务数据量不能保证一样,所以每个子任务的处理时间都不一样。例如分别有子任务A和B。如果子任务A的1ms的时候已经执行,子任务B还在执行。那么如果我们子任务A的线程等待子任务B完毕后在进行汇总,那么子任务A线程就会在浪费执行时间,最终的执行时间就以最耗时的子任务为准。而如果我们的子任务A执行完毕后,处理子任务B的任务,并且执行完毕后将任务归还给子任务B。这样就可以提高执行效率。而这种就是工作窃取。

    解决这列问题的关键是分解子任务要合理,需要前期给出几种方案,选取最适合的一种。

    六、ForkJoin排序

    ForkJoin在实际使用中,经常用来对超大数量进行排序,特别的外排法经常使用

    public class SortForkJoin {
        /**
         * 排序
         *
         * @param arry
         * @return
         */
        public static int[] sort(int[] arry) {
            if (arry.length == 0) return arry;
            for (int index = 0; index < arry.length - 1; index++) {
                int pre_index = index;
                int currentValue = arry[index + 1];
                while (pre_index >= 0 && arry[pre_index] > currentValue) {
                    arry[pre_index + 1] = arry[pre_index];
                    pre_index--;
                }
                arry[pre_index + 1] = currentValue;
            }
            return arry;
        }
    
        /**
         * 组合
         *
         * @param left
         * @param right
         * @return
         */
        public static int[] merge(int[] left, int[] right) {
            int[] result = new int[left.length + right.length];
            for (int resultIndex = 0, leftIndex = 0, rightIndex = 0; resultIndex < result.length; resultIndex++) {
                if (leftIndex >= left.length) {
                    result[resultIndex] = right[rightIndex++];
                } else if (rightIndex >= right.length) {
                    result[resultIndex] = left[leftIndex++];
                } else if (left[leftIndex] > right[rightIndex]) {
                    result[resultIndex] = right[rightIndex++];
                } else {
                    result[resultIndex] = left[leftIndex++];
                }
            }
            return result;
        }
    
    
         static  class SortTask extends RecursiveTask<int[]> {
            private int threshold;
            private int start;
            private int end;
            private int segmentation ;
            private int[] src;
    
            public SortTask(int[] src,int start,int end,int segmentation){
                this.src = src;
                this.start = start;
                this.end = end;
                this.threshold = src.length/segmentation;
                this.segmentation = segmentation;
            }
    
            @Override
            protected int[] compute() {
                if((end - start) <threshold){
                   int mid =  (end-start)/2;
                   SortTask leftTask = new SortTask(src,start,mid,segmentation);
                   SortTask rightTask = new SortTask(src,mid+1,end,segmentation);
                   invokeAll(leftTask,rightTask);
                   return SortForkJoin.merge(leftTask.join(),rightTask.join());
                }else{
                   return  SortForkJoin.sort(src);
                }
            }
        }
    
        @Test
        public void test() {
            int[]  array = MakeArray.createIntArray();
            ForkJoinPool forkJoinPool= new ForkJoinPool();
            SortTask sortTask =new SortTask(array,0,array.length-1,1000);
            long start = System.currentTimeMillis();
            forkJoinPool.execute(sortTask);
            System.out.println(
                    " spend time:"+(System.currentTimeMillis()-start)+"ms");
        }
    
    }
    SortForkJoin
  • 相关阅读:
    jQuery中排除指定元素,同时选择剩下的所有元素
    Silverlight Telerik控件学习:弹出窗口RadWindow
    biztalk 2010 dev版安装小记
    Flex4中的ModuleLoader,Alert以及TitleWindow
    Silverlight Telerik控件学习:主题Theme切换
    用Flex模拟智能手机表单输入的自动放大功能
    "为帮助内容存储区指定的位置无效或者您无权访问该位置"解决方法
    Flex4中使用WCF
    Silverlight单元测试
    Silverlight:纠结的快捷键问题
  • 原文地址:https://www.cnblogs.com/xiangpeng/p/12803412.html
Copyright © 2020-2023  润新知