A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 71540 | Accepted: 22049 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
The sums may exceed the range of 32-bit integers.
Source
POJ Monthly--2007.11.25, Yang Yi
题目描述 : 区间修改,区间查询
此题一直wa的原因是我的代码全部用long long 才能过,虽然不知道为什么。
// Fast Sequence Operations I // Rujia Liu // 输入格式: // n m 数组范围是a[1]~a[n],初始化为0。操作有m个 // 1 L R v 表示设a[L]+=v, a[L+1]+v, ..., a[R]+=v // 2 L R 查询a[L]~a[R]的sum, min和max #include<cstdio> #include<cstring> #include<algorithm> #define LL long long using namespace std; const int maxnode = 111111 << 2; LL _sum; LL qL,qR, v; //<span style="color:#ff0000;">_sum为全局变量</span> struct IntervalTree { LL sumv[maxnode], addv[maxnode]; // 维护信息 void maintain(LL o, LL L, LL R) { int lc = o*2, rc = o*2+1; sumv[o]=0; if(R > L) { sumv[o] = sumv[lc] + sumv[rc]; } if(addv[o]) {sumv[o] += addv[o] * (R-L+1); } } void update(LL o, LL L, LL R) { int lc = o*2, rc = o*2+1; if(qL <= L && qR >= R) { // 递归边界 addv[o] += v; // 累加边界的add值 } else { int M = L + (R-L)/2; if(qL <= M) update(lc, L, M); if(qR > M) update(rc, M+1, R); } maintain(o, L, R); // 递归结束前重新计算本结点的附加信息 } void query(LL o, LL L, LL R, LL add) { if(qL <= L && qR >= R) { // 递归边界:用边界区间的附加信息更新答案 _sum += sumv[o] + add * (R-L+1); } else { // 递归统计,累加参数add int M = L + (R-L)/2; if(qL <= M) query(o*2, L, M, add + addv[o]); if(qR > M) query(o*2+1, M+1, R, add + addv[o]); } } }; IntervalTree tree; int main() { int m,n; scanf("%d%d",&n,&m); memset(&tree,0,sizeof(tree)); for(int i=1;i<=n;i++) { qL=i;qR=i; scanf("%I64d",&v); tree.update(1,1,n); } while(m--) { char s[5]; int a,b,c; scanf("%s",s); if(s[0]=='Q') { scanf("%I64d%I64d",&qL,&qR); _sum=0; tree.query(1,1,n,0); printf("%I64d ",_sum); } else { scanf("%I64d%I64d%I64d",&qL,&qR,&v); tree.update(1,1,n); } } // system("pause"); return 0; }