• 深入理解AQS


    简介

    AQS是Java并发包中很重要的一个抽象类,我们所使用的ReentrantLock、ReentrantReadWriteLock、CountDownLatch、Semaphore等都是基于AQS来实现的。

    1.1 实现原理

    AQS中维护了一个state变量这个表示共享的资源,以及一个CHL队列(多线程争夺资源的时候被阻塞的线程将会被放进这个队列)。这个队列不需要我们去维护,我们需要关注的几个点就是state变量的获取和释放规则。
    state 变量被声明的类型是volatile类型保证多线程下的资源可见性,state=1表示当前资源被占用。
    state值的更新是通过CAS操作来保证它修改的安全性。

    AQS中提供了以下主要的方法:

    • getState():获取锁的标志state值
    • setState():设置锁的标志state值
    • tryAcquire(int):独占方式获取锁。尝试获取资源,成功则返回true,失败则返回false。
    • tryRelease(int):独占方式释放锁。尝试释放资源,成功则返回true,失败则返回false。

    这里对应独占锁还有两个方法是对应共享锁的 tryShare方法。

    private volatile int state;//共享变量,使用volatile修饰保证线程可见性
    //返回同步状态的当前值
    protected final int getState() {
            return state;
    }
     // 设置同步状态的值
    protected final void setState(int newState) {
            state = newState;
    }
    //原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
    protected final boolean compareAndSetState(int expect, int update) {
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }
    

    2.1 一些同步器的实现

    ReentrantLock 默认采用非公平锁,因为考虑获得更好的性能,通过 boolean 来决定是否用公平锁(传入 true 用公平锁)。

    /** Synchronizer providing all implementation mechanics */
    private final Sync sync;
    public ReentrantLock() {
        // 默认非公平锁
        sync = new NonfairSync();
    }
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
    

    ReentrantLock 中公平锁的 lock 方法

    static final class FairSync extends Sync {
        final void lock() {
            acquire(1);
        }
        // AbstractQueuedSynchronizer.acquire(int arg)
        public final void acquire(int arg) {
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
        }
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                // 1. 和非公平锁相比,这里多了一个判断:是否有线程在等待
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }
    

    非公平锁的 lock 方法:

    static final class NonfairSync extends Sync {
        final void lock() {
            // 2. 和公平锁相比,这里会直接先进行一次CAS,成功就返回了
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
        // AbstractQueuedSynchronizer.acquire(int arg)
        public final void acquire(int arg) {
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
        }
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }
    /**
     * Performs non-fair tryLock.  tryAcquire is implemented in
     * subclasses, but both need nonfair try for trylock method.
     */
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 这里没有对阻塞队列进行判断
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
    

    总结:公平锁和非公平锁只有两处不同:

    非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。
    非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中,如果发现锁这个时候被释放了(state == 0),非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。
    公平锁和非公平锁就这两点区别,如果这两次 CAS 都不成功,那么后面非公平锁和公平锁是一样的,都要进入到阻塞队列等待唤醒。

    相对来说,非公平锁会有更好的性能,因为它的吞吐量比较大。当然,非公平锁让获取锁的时间变得更加不确定,可能会导致在阻塞队列中的线程长期处于饥饿状态。

  • 相关阅读:
    (转)轻松应对IDC机房带宽突然暴涨问题
    (转)老男孩:Linux企业运维人员最常用150个命令汇总
    (转)cut命令详解
    (转)Awk使用案例总结(运维必会)
    (转)Nmap命令的29个实用范例
    BigPipe学习研究
    js正则大扫除
    ffff表单提交的那点事
    高并发订单操作处理方法
    订单号的处理
  • 原文地址:https://www.cnblogs.com/xhj928675426/p/14611904.html
Copyright © 2020-2023  润新知