• ConcurrentHashMap原理分析


    前言

    HashTable是一个线程安全的类,它使用synchronized来锁住整张Hash表来实现线程安全,即每次锁住整张表让线程独占。ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的Hashtable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。

    有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁。这里“按顺序”是很重要的,否则极有可能出现死锁,在ConcurrentHashMap内部,段数组是final的,并且其成员变量实际上也是final的,但是,仅仅是将数组声明为final的并不保证数组成员也是final的,这需要实现上的保证。这可以确保不会出现死锁,因为获得锁的顺序是固定的。

    1.1 实现原理

    ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。如下图是ConcurrentHashMap的内部结构图:

    从图中可以看到,ConcurrentHashMap内部分为很多个Segment,每一个Segment拥有一把锁,然后每个Segment(继承ReentrantLock)

    static final class Segment<K,V> extends ReentrantLock implements Serializable
    Segment继承了ReentrantLock,表明每个segment都可以当做一个锁。(ReentrantLock前文已经提到,不了解的话就把当做synchronized的替代者吧)这样对每个segment中的数据需要同步操作的话都是使用每个segment容器对象自身的锁来实现。只有对全局需要改变时锁定的是所有的segment。

    Segment下面包含很多个HashEntry列表数组。对于一个key,需要经过三次(为什么要hash三次下文会详细讲解)hash操作,才能最终定位这个元素的位置,这三次hash分别为:

    • 对于一个key,先进行一次hash操作,得到hash值h1,也即h1 = hash1(key);
    • 将得到的h1的高几位进行第二次hash,得到hash值h2,也即h2 = hash2(h1高几位),通过h2能够确定该元素的放在哪个Segment;
    • 将得到的h1进行第三次hash,得到hash值h3,也即h3 = hash3(h1),通过h3能够确定该元素放置在哪个HashEntry。
      ConcurrentHashMap中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点),对应上面的图可以看出之间的关系
    /** 
    * The segments, each of which is a specialized hash table 
    */  
    final Segment<K,V>[] segments;
    

    不变(Immutable)和易变(Volatile)ConcurrentHashMap完全允许多个读操作并发进行,读操作并不需要加锁。如果使用传统的技术,如HashMap中的实现,如果允许可以在hash链的中间添加或删除元素,读操作不加锁将得到不一致的数据。ConcurrentHashMap实现技术是保证HashEntry几乎是不可变的。HashEntry代表每个hash链中的一个节点,其结构如下所示:

    static final class HashEntry<K,V> {  
         final K key;  
         final int hash;  
         volatile V value;  
         volatile HashEntry<K,V> next;  
     }
    

    在JDK 1.6中,HashEntry中的next指针也定义为final,并且每次插入将新添加节点作为链的头节点(同HashMap实现),而且每次删除一个节点时,会将删除节点之前的所有节点 拷贝一份组成一个新的链,而将当前节点的上一个节点的next指向当前节点的下一个节点,从而在删除以后 有两条链存在,因而可以保证即使在同一条链中,有一个线程在删除,而另一个线程在遍历,它们都能工作良好,因为遍历的线程能继续使用原有的链。因而这种实现是一种更加细粒度的happens-before关系,即如果遍历线程在删除线程结束后开始,则它能看到删除后的变化,如果它发生在删除线程正在执行中间,则它会使用原有的链,而不会等到删除线程结束后再执行,即看不到删除线程的影响。如果这不符合你的需求,还是乖乖的用Hashtable或HashMap的synchronized版本,Collections.synchronizedMap()做的包装。

    而HashMap中的Entry只有key是final的

    static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;
            V value;
            Entry<K,V> next;
            int hash;
    }
    

    不变 模式(immutable)是多线程安全里最简单的一种保障方式。因为你拿他没有办法,想改变它也没有机会。
    不变模式主要通过final关键字来限定的。在JMM中final关键字还有特殊的语义。Final域使得确保初始化安全性(initialization safety)成为可能,初始化安全性让不可变形对象不需要同步就能自由地被访问和共享。

    1.1.1 初始化

    先看看ConcurrentHashMap的初始化做了哪些事情,构造函数的源码如下:

    public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (concurrencyLevel > MAX_SEGMENTS)
                concurrencyLevel = MAX_SEGMENTS;
            // Find power-of-two sizes best matching arguments
            int sshift = 0;
            int ssize = 1;
            while (ssize < concurrencyLevel) {
                ++sshift;
                ssize <<= 1;
            }
            this.segmentShift = 32 - sshift;
            this.segmentMask = ssize - 1;
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            int c = initialCapacity / ssize;
            if (c * ssize < initialCapacity)
                ++c;
            int cap = MIN_SEGMENT_TABLE_CAPACITY;
            while (cap < c)
                cap <<= 1;
            // create segments and segments[0]
            Segment<K,V> s0 =
                new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                                 (HashEntry<K,V>[])new HashEntry[cap]);
            Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
            UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
            this.segments = ss;
        }
    

    传入的参数有initialCapacity,loadFactor,concurrencyLevel这三个。

    • initialCapacity表示新创建的这个ConcurrentHashMap的初始容量,也就是上面的结构图中的Entry数量。默认值为static final int DEFAULT_INITIAL_CAPACITY = 16;
    • loadFactor表示负载因子,就是当ConcurrentHashMap中的元素个数大于loadFactor * 最大容量时就需要rehash,扩容。默认值为static final float DEFAULT_LOAD_FACTOR = 0.75f;
    • concurrencyLevel表示并发级别,这个值用来确定Segment的个数,Segment的个数是大于等于concurrencyLevel的第一个2的n次方的数。比如,如果concurrencyLevel为12,13,14,15,16这些数,则Segment的数目为16(2的4次方)。默认值为static final int DEFAULT_CONCURRENCY_LEVEL = 16;。理想情况下ConcurrentHashMap的真正的并发访问量能够达到concurrencyLevel,因为有concurrencyLevel个Segment,假如有concurrencyLevel个线程需要访问Map,并且需要访问的数据都恰好分别落在不同的Segment中,则这些线程能够无竞争地自由访问(因为他们不需要竞争同一把锁),达到同时访问的效果。这也是为什么这个参数起名为“并发级别”的原因。

    初始化的一些动作:

    • 验证参数的合法性,如果不合法,直接抛出异常。
    • concurrencyLevel也就是Segment的个数不能超过规定的最大Segment的个数,默认值为static final int MAX_SEGMENTS = 1 << 16;,如果超过这个值,设置为这个值。
    • 然后使用循环找到大于等于concurrencyLevel的第一个2的n次方的数ssize,这个数就是Segment数组的大小,并记录一共向左按位移动的次数sshift,并令segmentShift = 32 - sshift,并且segmentMask的值等于ssize - 1,segmentMask的各个二进制位都为1,目的是之后可以通过key的-
    • hash值与这个值做&运算确定Segment的索引。
    • 检查给的容量值是否大于允许的最大容量值,如果大于该值,设置为该值。最大容量值为static final int MAXIMUM_CAPACITY = 1 << 30;。
    • 然后计算每个Segment平均应该放置多少个元素,这个值c是向上取整的值。比如初始容量为15,Segment个数为4,则每个Segment平均需要放置4个元素。
    • 最后创建一个Segment实例,将其当做Segment数组的第一个元素。

    1.1.2 put操作

    put操作的源码如下:

    public V put(K key, V value) {
          Segment<K,V> s;
          if (value == null)
              throw new NullPointerException();
          int hash = hash(key);
          int j = (hash >>> segmentShift) & segmentMask;
          if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
               (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
              s = ensureSegment(j);
          return s.put(key, hash, value, false);
      }
    

    操作步骤如下:

    • 判断value是否为null,如果为null,直接抛出异常。
    • key通过一次hash运算得到一个hash值。(这个hash运算下文详说)
    • 将得到hash值向右按位移动segmentShift位,然后再与segmentMask做&运算得到segment的索引j。
    • 在初始化的时候我们说过segmentShift的值等于32-sshift,例如concurrencyLevel等于16,则sshift等于4,则segmentShift为28。hash值是一个32位的整数,将其向右移动28位就变成这个样子:
    • 0000 0000 0000 0000 0000 0000 0000 xxxx,然后再用这个值与segmentMask做&运算,也就是取最后四位的值。这个值确定Segment的索引。
    • 使用Unsafe的方式从Segment数组中获取该索引对应的Segment对象。
    • 向这个Segment对象中put值,这个put操作也基本是一样的步骤(通过&运算获取HashEntry的索引,然后set)。
    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
                HashEntry<K,V> node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);
                V oldValue;
                try {
                    HashEntry<K,V>[] tab = table;
                    int index = (tab.length - 1) & hash;
                    HashEntry<K,V> first = entryAt(tab, index);
                    for (HashEntry<K,V> e = first;;) {
                        if (e != null) {
                            K k;
                            if ((k = e.key) == key ||
                                (e.hash == hash && key.equals(k))) {
                                oldValue = e.value;
                                if (!onlyIfAbsent) {
                                    e.value = value;
                                    ++modCount;
                                }
                                break;
                            }
                            e = e.next;
                        }
                        else {
                            if (node != null)
                                node.setNext(first);
                            else
                                node = new HashEntry<K,V>(hash, key, value, first);
                            int c = count + 1;
                            if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                                rehash(node);
                            else
                                setEntryAt(tab, index, node);
                            ++modCount;
                            count = c;
                            oldValue = null;
                            break;
                        }
                    }
                } finally {
                    unlock();
                }
                return oldValue;
            }
    

    put操作是要加锁的。

    1.1.3 get操作

    get操作的源码如下:

    public V get(Object key) {
            Segment<K,V> s; // manually integrate access methods to reduce overhead
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
                for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                         (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                     e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                        return e.value;
                }
            }
            return null;
        }
    

    操作步骤为:

    • 和put操作一样,先通过key进行两次hash确定应该去哪个Segment中取数据。
    • 使用Unsafe获取对应的Segment,然后再进行一次&运算得到HashEntry链表的位置,然后从链表头开始遍历整个链表(因为Hash可能会有碰撞,所以用一个链表保存),如果找到对应的key,则返回对应的value值,如果链表遍历完都没有找到对应的key,则说明Map中不包含该key,返回null。
    • 值得注意的是,get操作是不需要加锁的(如果value为null,会调用readValueUnderLock,只有这个步骤会加锁),通过前面提到的volatile和final来确保数据安全。

    1.1.4 size操作

    size操作与put和get操作最大的区别在于,size操作需要遍历所有的Segment才能算出整个Map的大小,而put和get都只关心一个Segment。假设我们当前遍历的Segment为SA,那么在遍历SA过程中其他的Segment比如SB可能会被修改,于是这一次运算出来的size值可能并不是Map当前的真正大小。所以一个比较简单的办法就是计算Map大小的时候所有的Segment都Lock住,不能更新(包含put,remove等等)数据,计算完之后再Unlock。这是普通人能够想到的方案,但是牛逼的作者还有一个更好的Idea:先给3次机会,不lock所有的Segment,遍历所有Segment,累加各个Segment的大小得到整个Map的大小,如果某相邻的两次计算获取的所有Segment的更新的次数(每个Segment都有一个modCount变量,这个变量在Segment中的Entry被修改时会加一,通过这个值可以得到每个Segment的更新操作的次数)是一样的,说明计算过程中没有更新操作,则直接返回这个值。如果这三次不加锁的计算过程中Map的更新次数有变化,则之后的计算先对所有的Segment加锁,再遍历所有Segment计算Map大小,最后再解锁所有Segment。源代码如下:

    public int size() {
            // Try a few times to get accurate count. On failure due to
            // continuous async changes in table, resort to locking.
            final Segment<K,V>[] segments = this.segments;
            int size;
            boolean overflow; // true if size overflows 32 bits
            long sum;         // sum of modCounts
            long last = 0L;   // previous sum
            int retries = -1; // first iteration isn't retry
            try {
                for (;;) {
                    if (retries++ == RETRIES_BEFORE_LOCK) {
                        for (int j = 0; j < segments.length; ++j)
                            ensureSegment(j).lock(); // force creation
                    }
                    sum = 0L;
                    size = 0;
                    overflow = false;
                    for (int j = 0; j < segments.length; ++j) {
                        Segment<K,V> seg = segmentAt(segments, j);
                        if (seg != null) {
                            sum += seg.modCount;
                            int c = seg.count;
                            if (c < 0 || (size += c) < 0)
                                overflow = true;
                        }
                    }
                    if (sum == last)
                        break;
                    last = sum;
                }
            } finally {
                if (retries > RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        segmentAt(segments, j).unlock();
                }
            }
            return overflow ? Integer.MAX_VALUE : size;
        }
    

    举个例子:

    一个Map有4个Segment,标记为S1,S2,S3,S4,现在我们要获取Map的size。计算过程是这样的:第一次计算,不对S1,S2,S3,S4加锁,遍历所有的Segment,假设每个Segment的大小分别为1,2,3,4,更新操作次数分别为:2,2,3,1,则这次计算可以得到Map的总大小为1+2+3+4=10,总共更新操作次数为2+2+3+1=8;第二次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设这次每个Segment的大小变成了2,2,3,4,更新次数分别为3,2,3,1,因为两次计算得到的Map更新次数不一致(第一次是8,第二次是9)则可以断定这段时间Map数据被更新,则此时应该再试一次;第三次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设每个Segment的更新操作次数还是为3,2,3,1,则因为第二次计算和第三次计算得到的Map的更新操作的次数是一致的,就能说明第二次计算和第三次计算这段时间内Map数据没有被更新,此时可以直接返回第三次计算得到的Map的大小。最坏的情况:第三次计算得到的数据更新次数和第二次也不一样,则只能先对所有Segment加锁再计算最后解锁。

    1.1.5 containsValue操作

    containsValue操作采用了和size操作一样的想法:

    public boolean containsValue(Object value) {
            // Same idea as size()
            if (value == null)
                throw new NullPointerException();
            final Segment<K,V>[] segments = this.segments;
            boolean found = false;
            long last = 0;
            int retries = -1;
            try {
                outer: for (;;) {
                    if (retries++ == RETRIES_BEFORE_LOCK) {
                        for (int j = 0; j < segments.length; ++j)
                            ensureSegment(j).lock(); // force creation
                    }
                    long hashSum = 0L;
                    int sum = 0;
                    for (int j = 0; j < segments.length; ++j) {
                        HashEntry<K,V>[] tab;
                        Segment<K,V> seg = segmentAt(segments, j);
                        if (seg != null && (tab = seg.table) != null) {
                            for (int i = 0 ; i < tab.length; i++) {
                                HashEntry<K,V> e;
                                for (e = entryAt(tab, i); e != null; e = e.next) {
                                    V v = e.value;
                                    if (v != null && value.equals(v)) {
                                        found = true;
                                        break outer;
                                    }
                                }
                            }
                            sum += seg.modCount;
                        }
                    }
                    if (retries > 0 && sum == last)
                        break;
                    last = sum;
                }
            } finally {
                if (retries > RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        segmentAt(segments, j).unlock();
                }
            }
            return found;
        }
    

    1.2 关于hash

    看看hash的源代码:

    private int hash(Object k) {
            int h = hashSeed;
    
            if ((0 != h) && (k instanceof String)) {
                return sun.misc.Hashing.stringHash32((String) k);
            }
    
            h ^= k.hashCode();
    
            // Spread bits to regularize both segment and index locations,
            // using variant of single-word Wang/Jenkins hash.
            h += (h <<  15) ^ 0xffffcd7d;
            h ^= (h >>> 10);
            h += (h <<   3);
            h ^= (h >>>  6);
            h += (h <<   2) + (h << 14);
            return h ^ (h >>> 16);
        }
    

    源码中的注释是这样的:

    Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. This is critical because ConcurrentHashMap uses power-of-two length hash tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper bits.
    这里用到了Wang/Jenkins hash算法的变种,主要的目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。

    举个简单的例子:

    System.out.println(Integer.parseInt("0001111", 2) & 15);
    System.out.println(Integer.parseInt("0011111", 2) & 15);
    System.out.println(Integer.parseInt("0111111", 2) & 15);
    System.out.println(Integer.parseInt("1111111", 2) & 15);
    这些数字得到的hash值都是一样的,全是15,所以如果不进行第一次预hash,发生冲突的几率还是很大的,但是如果我们先把上例中的二进制数字使用hash()函数先进行一次预hash,得到的结果是这样的:

    0100|0111|0110|0111|1101|1010|0100|1110 1111|0111|0100|0011|0000|0001|1011|1000 0111|0111|0110|1001|0100|0110|0011|1110 1000|0011|0000|0000|1100|1000|0001|1010
    上面这个例子引用自: InfoQ

    可以看到每一位的数据都散开了,并且ConcurrentHashMap中是使用预hash值的高位参与运算的。比如之前说的先将hash值向右按位移动28位,再与15做&运算,得到的结果都别为:4,15,7,8,没有冲突!

    1.3 注意事项

    ConcurrentHashMap中的key和value值都不能为null,HashMap中key可以为null,HashTable中key不能为null。

    ConcurrentHashMap是线程安全的类并不能保证使用了ConcurrentHashMap的操作都是线程安全的!

    ConcurrentHashMap的get操作不需要加锁,put操作需要加锁

  • 相关阅读:
    6-8 adaboost分类器2
    6-7 adaboost分类器1
    6-6 Haar特征3
    6-5 Haar特征2
    6-4 Haar特征1
    6-3 图片合成视频
    6-2 视频分解图片
    Linux操作系统六大优点
    Linux系统正则表达式用法笔记
    Linux系统正则表达式用法笔记
  • 原文地址:https://www.cnblogs.com/xhj928675426/p/13432709.html
Copyright © 2020-2023  润新知