• TensorFlow利用Keras实现线性回归


    test.csv数据集

    ,Education,Income
    1,10.000000 ,26.658839
    2,10.401338 ,27.306435
    3,10.842809 ,22.132410
    4,11.244147 ,21.169841
    5,11.645449 ,15.192634
    6,12.086957 ,26.398951
    7,12.048829 ,17.435307
    8,12.889632 ,25.507885
    9,13.290970 ,36.884595
    10,13.732441 ,39.666109
    11,14.133779 ,34.396281
    12,14.635117 ,41.497994
    13,14.978589 ,44.981575
    14,15.377926 ,47.039595
    15,15.779264 ,48.252578
    16,16.220736 ,57.034251
    17,16.622074 ,51.490919
    18,17.023411 ,51.336621
    19,17.464883 ,57.681998
    20,17.866221 ,68.553714
    21,18.267559 ,64.310925
    22,18.709030 ,68.959009
    23,19.110368 ,74.614639
    24,19.511706 ,71.867195
    25,19.913043 ,76.098135
    26,20.354515 ,75.775216
    27,20.755853 ,72.486055
    28,21.167191 ,77.355021
    29,21.598662 ,72.118790
    30,22.000000 ,80.260571

    源代码:

    import tensorflow as tf
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    data = pd.read_csv("../data/test.csv")
    x = data.Education
    y = data.Income
    W = tf.Variable(np.random.randn(),name="weight")
    b = tf.Variable(np.random.randn(),name="bias")
    
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
    model.compile(optimizer='adam',loss='mse')
    history = model.fit(x,y,epochs=5000)
    plt.scatter(x,y,c='r')
    plt.plot(x,model.predict(x))
    plt.show()

  • 相关阅读:
    MS SQL 数据库状态为SUSPECT(可疑)的处理方法
    根據名稱查找文件,并移動
    deploy war to weblogic via script(shell)
    maven打包时包含所有依赖的jar
    随笔
    如何在Oracle SQL Developer對Procedure除錯
    git常用命令和記錄
    英語筆記
    IDEA設置
    mysql常用命令和记录
  • 原文地址:https://www.cnblogs.com/xhj1074376195/p/14269224.html
Copyright © 2020-2023  润新知