• [BZOJ3270]博物馆(矩阵求逆)


    题面

    https://darkbzoj.tk/problem/3270

    题解

    前置知识:

    本题的正常做法见https://blog.csdn.net/aarongzk/article/details/51473258。

    这里提供一种不正常的矩阵求逆方法。之所以说它不正常,是因为我自己都不能证明这个算法的正确性,但是它是能过题的(

    设状态((t,u,v))表示当前时刻为t,两人分别处在位置u、v。设(f[t][u][v])表示从初始状态出发,能够到达状态((t,u,v))的概率。下记(q[u]=frac{1-p[u]}{deg[u]})(link[u])表示u的相邻点集合,有转移方程如下:

    [f[t][u][v] = egin{cases} f[t-1][u][v] imes p[u]p[v] \ sumlimits_{i in link[u],i eq v}f[t-1][i][v] imes q[i]p[v] \ sumlimits_{j in link[v],j eq u}f[t-1][u][j] imes p[u]q[j] \ sumlimits_{i in link[u],j in link[v],i eq j}f[t-1][i][j] imes q[i]q[j] end{cases} ]

    发现这个转移可以用矩阵描述。

    [M imes left[ egin{matrix} f[t-1][1][1] \ f[t-1][1][2] \ vdots \f[t-1][n][n] end{matrix} ight] = left[ egin{matrix} f[t][1][1] \ f[t][1][2] \ vdots \f[t][n][n] end{matrix} ight] ]

    其中转移矩阵M,是一个(n^2 imes n^2)的矩阵,可以通过上面的转移方程计算出来。

    我们想计算出(F[u][v]=sum_{t=0}^{+ infty}f[t][u][v]),因为在u点相遇的答案就是(frac{F[u][u]}{sum_i f[i][i]})。而

    [(E+M+M^2+…) imes left[ egin{matrix} f[0][1][1] \ f[0][1][2] \ vdots \f[0][n][n] end{matrix} ight] = left[ egin{matrix} F[1][1] \ F[1][2] \ vdots \F[n][n] end{matrix} ight] ]

    显然(f[0][u][v] = [u=a] imes[v=b]);另外,(E+M+M^2+…)又可以化成(frac{E}{E-M}=(E-M)^{-1})

    这样就做完了,总时间(O(n^6))

    不过,这个算法有两个BUG:

    1. 无法证明(E-M)的行列式不等于0,因此((E-M)^{-1})不一定存在
    2. (E+M+M^2…)的收敛性无从证明,因此几何级数公式不一定适用

    虽然这样做能过题,但是这两点仍未解决,欢迎在评论区发表见解~

    代码

    #include<bits/stdc++.h>
    
    using namespace std;
    
    #define ld long double
    #define rg register
    #define In inline
    
    const int SN = 400;
    const int N = 20;
    const ld eps = 1e-9;
    
    In int sgn(ld x){
    	return x < eps ? -1 : x > eps;
    }
    
    In int read(){
    	int s = 0,ww = 1;
    	char ch = getchar();
    	while(ch < '0' || ch > '9'){if(ch == '-')ww = -1;ch = getchar();}
    	while('0' <= ch && ch <= '9'){s = 10 * s + ch - '0';ch = getchar();}
    	return s * ww;
    }
    
    int n,m,sn;
    
    In int id(int i,int j){
    	return (i - 1) * n + j;
    }
    
    struct mat{
    	ld d[SN+5][SN+5];
    	friend mat operator + (mat a,mat b){
    		for(rg int i = 1;i <= sn;i++)
    			for(rg int j = 1;j <= sn;j++)a.d[i][j] += b.d[i][j];
    		return a;
    	}	
    	friend mat operator - (mat a,mat b){	
    		for(rg int i = 1;i <= sn;i++)
    			for(rg int j = 1;j <= sn;j++)a.d[i][j] -= b.d[i][j];
    		return a;
    	}
    	friend mat operator * (mat a,mat b){
    		mat c;
    		for(rg int i = 1;i <= sn;i++)
    			for(rg int j = 1;j <= sn;j++)
    				for(rg int k = 1;k <= sn;k++)c.d[i][j] += a.d[i][k] * b.d[k][j];
    		return c;
    	}
    	void Swap(int i1,int i2){
    		for(rg int j = 1;j <= sn;j++)swap(d[i1][j],d[i2][j]);
    	}
    	void mul(int i,ld k){
    		for(rg int j = 1;j <= sn;j++)d[i][j] *= k;
    	}
    	void add(int i1,int i2,ld k){
    		for(rg int j = 1;j <= sn;j++)d[i1][j] += d[i2][j] * k;
    	}
    }M,E;
    
    mat inv(mat a){
    	mat b = E;
    	for(rg int j = 1;j <= sn;j++){
    		for(rg int i = j;i <= sn;i++)if(sgn(a.d[i][j]) != 0){
    			if(i != j)a.Swap(i,j),b.Swap(i,j);
    			break;
    		}
    		ld x = 1.0 / a.d[j][j];
    		a.mul(j,x),b.mul(j,x);
    		for(rg int i = j + 1;i <= sn;i++){
    			ld y = a.d[i][j];
    			a.add(i,j,-y),b.add(i,j,-y);
    		}
    	}
    	for(rg int j = sn;j >= 1;j--){
    		for(rg int i = 1;i < j;i++){
    			ld y = a.d[i][j];
    			a.add(i,j,-y),b.add(i,j,-y);
    		}
    	}
    	return b;	
    }
    
    int head[N+5],deg[N+5],cnt;
    
    struct edge{
    	int next,des;
    }e[2*SN+5];
    
    In void addedge(int a,int b){
    	cnt++;
    	deg[a]++;
    	e[cnt].des = b;
    	e[cnt].next = head[a];
    	head[a] = cnt;
    }
    
    ld p[N+5],q[N+5];
    
    int main(){
    	int a,b;
    	scanf("%d%d%d%d",&n,&m,&a,&b);
    	sn = n * n;	
    	for(rg int i = 1;i <= sn;i++)E.d[i][i] = 1;
    	for(rg int i = 1;i <= m;i++){
    		int u,v;
    		scanf("%d%d",&u,&v);
    		addedge(u,v);
    		addedge(v,u);
    	}
    	for(rg int i = 1;i <= n;i++){
    		double x;
    		scanf("%lf",&x);
    		p[i] = x;
    		q[i] = (1.0 - p[i]) / deg[i];
    	}
    	for(rg int u = 1;u <= n;u++)
    		for(rg int v = 1;v <= n;v++){
    			if(u != v)M.d[id(u,v)][id(u,v)] = p[u] * p[v];
    			for(rg int eu = head[u];eu;eu = e[eu].next){
    				int i = e[eu].des;
    				if(i != v)M.d[id(u,v)][id(i,v)] = q[i] * p[v];
    			}
    			for(rg int ev = head[v];ev;ev = e[ev].next){
    				int j = e[ev].des;
    				if(u != j)M.d[id(u,v)][id(u,j)] = p[u] * q[j];
    			}
    			for(rg int eu = head[u];eu;eu = e[eu].next){
    				for(rg int ev = head[v];ev;ev = e[ev].next){
    					int i = e[eu].des,j = e[ev].des;
    					if(i != j)M.d[id(u,v)][id(i,j)] = q[i] * q[j];
    				}
    			}
    		}
    	M = inv(E - M);
    	ld s = 0;
    	for(rg int i = 1;i <= n;i++)s += M.d[id(i,i)][id(a,b)];
    	for(rg int i = 1;i <= n;i++){
    		double p = M.d[id(i,i)][id(a,b)] / s;
    		printf("%.6lf",p);
    		putchar(i == n ? '
    ' : ' ');
    	}
    	return 0;
    }
    
  • 相关阅读:
    vue父子组件传值的方式
    定时任务写法
    仅仅为笔记
    consul剔除某个服务
    mybatis批量查询
    一次eureka的事故
    feign的工作原理
    JVM优化
    threadlocal应用
    秋招总结
  • 原文地址:https://www.cnblogs.com/xh092113/p/12461997.html
Copyright © 2020-2023  润新知