从题解里看到了二分才想到二分
题意为:给出一棵树和一些路线,要求你选树上一条边边权变为0后,路线中最大值最小
显然答案有单调性,二分答案
将所有长度超过 mid 的路径在树上标记出来,找出一条被所有的标记路径覆盖的边,当前答案合法条件为:max_path - maxlen <= mid
显然上边的操作可以树上差分,预处理每条路径端点的 lca 即可做到 O(n) 判断
这个 O(n) 大概是 2n ,卡卡常就好了
代码:
#include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cctype> #include<cstdio> using namespace std; const int MAXN = 300005; struct EDGE{ int nxt, to, val; EDGE(int NXT = 0, int TO = 0, int VAL = 0) {nxt = NXT; to = TO; val = VAL;} }edge[MAXN << 1]; struct QUE{ int x, y, lca, dst; }que[MAXN]; int n, m, totedge, mxl, mnl = 0x7fffffff; int head[MAXN], dst[MAXN], tag[MAXN], top[MAXN]; int dep[MAXN], siz[MAXN], son[MAXN], fa[MAXN]; inline int rd() { register int x = 0; register char c = getchar(); while(!isdigit(c)) c = getchar(); while(isdigit(c)) { x = x * 10 + (c ^ 48); c = getchar(); } return x; } inline int mx(int x, int y) { return (x > y ? x : y); } inline int mn(int x, int y) { return (x > y ? y : x); } void gfs(int x) { siz[x] = 1; for(int i = head[x]; i; i = edge[i].nxt) if(edge[i].to != fa[x]) { int y = edge[i].to; dep[y] = dep[x] + 1; dst[y] = dst[x] + edge[i].val; fa[y] = x; gfs(y); siz[x] += siz[y]; if(siz[y] > siz[son[x]]) son[x] = y; } return; } void ifs(int x) { if(!top[x]) top[x] = x; if(son[x]) { top[son[x]] = top[x]; ifs(son[x]); } for(int i = head[x]; i; i = edge[i].nxt) if(edge[i].to != son[x] && edge[i].to != fa[x]) ifs(edge[i].to); return; } inline int lca(int x, int y) { while(top[x] != top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return (dep[x] > dep[y] ? y : x); } int dfs(int x, int tot, int frm) { int maxlen = 0; for(int i = head[x]; i; i = edge[i].nxt) if(fa[x] != edge[i].to) { maxlen = max(maxlen, dfs(edge[i].to, tot, i)); tag[x] += tag[edge[i].to]; } return (tag[x] == tot) ? (mx(maxlen, edge[frm].val)) : maxlen; } inline bool chk(int mid) { register int tot = 0, maxlen = 0; register bool extra = false; for(int i = 1; i <= n; ++i) tag[i] = 0; for(int i = 1; i <= m; ++i) { if(que[i].dst > mid) { maxlen = mx(maxlen,que[i].dst); ++tot; ++tag[que[i].x]; ++tag[que[i].y]; tag[que[i].lca] -= 2; extra = true; } } if(!extra) return true; return (maxlen - dfs(1, tot, 0) <= mid); } inline void hfs(int l, int r) { int mid = 0, ans = 0; while(l < r) { mid = ((l + r) >> 1); if(chk(mid)) { ans = mid; r = mid; } else l = mid + 1; } printf("%d ", ans); return; } int main() { // freopen("testdata1.in", "r", stdin); n = rd(); m = rd(); register int xx, yy, vv, tmp, N; tmp = (n - 1) & 1; N = n - 1 - tmp; //printf("tmp = %d, N = %d ", tmp, N); for(int i = 1; i <= N; i += 2) { // printf("i = %d ", i); // printf("totedge = %d ", totedge); xx = rd(); yy = rd(); vv = rd(); mnl = mn(mnl,vv); edge[++totedge] = EDGE(head[xx], yy, vv); head[xx] = totedge; edge[++totedge] = EDGE(head[yy], xx, vv); head[yy] = totedge; xx = rd(); yy = rd(); vv = rd(); mnl = mn(mnl,vv); edge[++totedge] = EDGE(head[xx], yy, vv); head[xx] = totedge; edge[++totedge] = EDGE(head[yy], xx, vv); head[yy] = totedge; // printf("totedge = %d ", totedge); } for(int i = 1; i <= tmp; ++i) { xx = rd(); yy = rd(); vv = rd(); mnl = mn(mnl,vv); edge[++totedge] = EDGE(head[xx], yy, vv); head[xx] = totedge; edge[++totedge] = EDGE(head[yy], xx, vv); head[yy] = totedge; } dst[1] = 0; dep[1] = 1; gfs(1); ifs(1); for(int i = 1; i <= m; ++i) { que[i].x = rd(); que[i].y = rd(); que[i].lca = lca(que[i].x, que[i].y); que[i].dst = dst[que[i].x] + dst[que[i].y] - (dst[que[i].lca] << 1); mxl = mx(mxl,que[i].dst); } hfs(mnl, mxl); return 0; }