1.binary-tree-postorder-traversal
解答:输出树后序遍历的结果(非递归)。采用先序遍历(把根左右改为根右左),然后reverse一下。
//树的非递归前序遍历(入栈时先压入右子树再压入左子树)
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
vector<int> res;
if(!root)return res;
stack<TreeNode *> st;
st.push(root);
while(st.size()){
TreeNode *pNode = st.top();
st.pop();
res.push_back(pNode->val);
if(pNode->right)st.push(pNode->right);
if(pNode->left)st.push(pNode->left);
}
return res;
}
};
//非递归的后序遍历(先压入左子树再压入右子树,最后reverse一下,中右左->左右中)
class Solution {
public:
vector<int> postorderTraversal(TreeNode *root) {
vector<int> res;
if(!root)
return res;
stack<TreeNode *> st;
st.push(root);
while(st.size()){
TreeNode *p = st.top();
st.pop();
res.push_back(p->val);
if(p->left)
st.push(p->left);
if(p->right)
st.push(p->right);
}
reverse(res.begin(),res.end());
return res;
}
};
//树的非递归中序遍历(不断把左孩子入栈,每次弹出时检测是否有右孩子有则入栈)
class Solution {
public:
vector<int> inorderTraversal(TreeNode *root) {
vector<int> res;
if(!root)return res;
stack<TreeNode *> st;
TreeNode *pNode = root;
while(st.size()||pNode){
while(pNode){
st.push(pNode);
pNode = pNode->left;
}
pNode = st.top();
st.pop();
res.push_back(pNode->val);
pNode = pNode->right;
}
return res;
}
};
2. sum-root-to-leaf-numbers
解答:递归结合先序遍历
class Solution { public: int sumNumbers(TreeNode *root) { if(!root)return 0; int sum=0; return preOrder(root,sum); } int preOrder(TreeNode *root, int sum){ if(!root)return 0; sum = sum*10+root->val; if((!root->left)&&(!root->right))return sum; else return preOrder(root->left,sum)+preOrder(root->right,sum); } };
3. binary-tree-maximum-path-sum
依旧是递归的思想,这里加入一个全局变量。
class Solution { public: int Max; int maxPathSum(TreeNode *root) { Max = INT_MIN; maxSum(root); return Max; } int maxSum(TreeNode *root) { if(root == NULL) return 0; int l_Max = max(0, maxSum(root->left)); int r_Max = max(0, maxSum(root->right)); Max = max(Max, l_Max + r_Max + root->val); return max(l_Max, r_Max) + root->val; } };
4.populating-next-right-pointers-in-each-node
class Solution { public: void connect(TreeLinkNode *root) { if(!root)return; if(root->left&&root->right) root->left->next = root->right; if(root->next&&root->right) root->right->next = root->next->left; connect(root->left); connect(root->right); } };
5.populating-next-right-pointers-in-each-node-ii
解答:层次遍历,依次遍历每一层。
class Solution { public: void connect(TreeLinkNode *root) { if(!root)return; queue<TreeLinkNode *> cur; cur.push(root); while(cur.size()){ int len = cur.size(); for(int i=0;i<len;i++){ TreeLinkNode *p = cur.front(); cur.pop(); if(p->left)cur.push(p->left); if(p->right)cur.push(p->right); if(i==len-1)p->next=nullptr; else p->next=cur.front(); } } } };
6.balanced-binary-tree
class Solution { public: bool isBalanced(TreeNode *root) { if(!root)return 1; if(abs(maxDepth(root->left)-maxDepth(root->right))>1)return 0; if((!isBalanced(root->left))||(!isBalanced(root->right)))return 0; return 1; } int maxDepth(TreeNode *root){ if(!root)return 0; return max(maxDepth(root->left),maxDepth(root->right))+1; } };
7. path-sum
class Solution { public: bool hasPathSum(TreeNode *root, int sum) { if(!root)return 0; if(!root->left&&!root->right)return (root->val==sum)?1:0; return (hasPathSum(root->left,sum - root->val)||hasPathSum(root->right,sum - root->val)); } };
8. payh-sum-ii
解答:深度优先搜索
class Solution { public: vector<vector<int> > pathSum(TreeNode *root, int sum) { vector<vector<int> > res; if(!root)return res; vector<int> path; dfs(root, sum, res, path); return res; } void dfs(TreeNode *root, int sum, vector<vector<int> > &res, vector<int> &path){ if(!root)return; path.push_back(root->val); if(root->val==sum&&!root->left&&!root->right)res.push_back(path); dfs(root->left, sum-root->val, res, path); dfs(root->right, sum-root->val, res, path); path.pop_back(); } };
9. recover-binary-search-tree
思路:涉及二叉树就要想到它前序遍历是递增的。
class Solution { public: TreeNode *pre, *a, *b; void swap(int &a, int &b){ int temp = a; a = b; b = temp; } void recoverTreeCore(TreeNode *root) { if(root->left)recoverTreeCore(root->left); if(pre&&pre->val>root->val){ if(!a)a = pre; b = root; } pre = root; if(root->right)recoverTreeCore(root->right); } void recoverTree(TreeNode *root) { pre = nullptr; a = nullptr; b = nullptr; if(!root)return; recoverTreeCore(root); if(a&&b)swap(a->val, b->val); } };