• P1220 关路灯


    题目描述

    某一村庄在一条路线上安装了 (n) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

    为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

    现在已知老张走的速度为 (1m/s),每个路灯的位置(是一个整数,即距路线起点的距离,单位:(m))、功率((W)),老张关灯所用的时间很短而可以忽略不计。

    请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

    输入格式

    第一行是两个数字 (n)(表示路灯的总数)和 (c)(老张所处位置的路灯号);

    接下来 (n) 行,每行两个数据,表示第 (1) 盏到第 (n) 盏路灯的位置和功率。数据保证路灯位置单调递增。

    输出格式

    一个数据,即最少的功耗(单位:(J)(1J=1W imes s))。

    输入输出样例

    输入
    5 3
    2 10
    3 20
    5 20
    6 30
    8 10
    
    输出
    270
    

    说明/提示

    样例解释

    此时关灯顺序为 (3) (4) (2) (1) (5)

    数据范围

    (1le nle50,1le cle n)

    Solution

    一道需要分析题目性质的区间 (dp) 的题目,思维考验的很到位。
    首先分析一下为什么本题的做法是区间 (dp:)
    注意到老张是从一个点开始往左边或右边走,且经过的点的灯一定都是关的,所以说,[ (a_i<a_j<a_k),且 (a_i)(a_k) 的位置的灯已经关了,而 (a_j) 这个位置的灯没关 ] 这种情况这是不可能的。因为无论老张是从 (a_i) 走到 (a_k) 还是从 (a_k) 走到 (a_i),他都一定会经过 (a_j),那么他选择关上 (a_j) 位置的灯一定是最优的。
    这么说来,老张所关的灯一定是在一个连续的区间,这就启发我们利用区间 (dp) 来解决这道题。
    还有一个性质:
    老张每关一盏灯,他一定处于这个区间的端点。
    这一点很好理解,因为老张想要关灯,他就要让这个区间不断地向左向右扩展,那么他一定是要走出原来的区间的,这样他所在的位置就一定是区间端点。
    假设老张已经扩展的区间是 ([l,r]),且老张在区间的左端点 (l) 处,那么他下一步有两种选择:(①)关掉第 (l-1) 盏灯;(②)关掉第 (r+1) 盏灯。
    如果他要去关第 (l-1) 盏灯,他需要花 (a_{l}-a_{l-1}) 的时间,在此期间,(1)$l-1,r+1$(n) 的灯一直亮着,那么代价就是 ((a_l-a_{l-1})*(S[1][l-1]+S[r+1][n]))
    如果他要去关第 (r+1) 盏灯,他需要花 (a_{r+1}-a_l) 的时间,在此期间,(1)$l-1,r+1$(n) 的灯一直亮着,那么代价就是 ((a_{r+1}-a_{l})*(S[1][l-1]+S[r+1][n]))
    ((S[i][j]) 表示 (i)~(j) 的路灯 (1s) 所消耗的电能和())
    由此可见,老张在区间左右端点的位置不同,所影响的花费时间不同,进而影响不同的代价。
    所以我们要再开一维来记录老张此时是在区间的左端点还是右端点。
    那么状态也就随之出来了。

    状态设置

    (dp[l][r][0/1]) 表示老张已经将 ([l,r]) 内的灯关了,且老张此时是在左端点(()(0)表示())还是在右端点(()(1)表示())

    状态转移

    我是用填表法来做的。
    考虑 (dp[l][r][0]) 由什么转移到:
    既然老张是在区间的左端点,即 (a_l) 处,那么也就说明第 (l) 盏灯是老张刚关上的,那么上一步的区间应该是 ([l+1,r])
    如果老张原来是在 (a_{l+1}) 处,要走 (a_{l+1}-a_l) (s),代价为 ((a_{l+1}-a_l)*(S[1][l]+S[r+1][n]))
    如果老张原来是在 (a_r) 处,要走 (a_r-a_l) (s),代价为 ((a_r-a_l)*(S[1][l]+S[r+1][n]))
    两者取 (min) 即可:
    (dp[l][r][0]=min(dp[l+1][r][0]+(a_{l+1}-a_l)*(S[1][l]+S[r+1][r]),dp[l+1][r][1]+(a_r-a_l)*(S[1][l]+S[r+1][n])))

    同理得:

    (dp[l][r][1]=min(dp[l][r-1][0]+(a_r-a_l)*(S[1][l-1]+S[r][n]),dp[l][r-1][1]+(a_r-a_{r-1})*(S[1][l-1]+S[r][n])))

    那么这个题就做完了。

    Code

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<ctime>
    #define db double
    #define ll long long
    using namespace std;
    inline int read()
    {
    	char ch=getchar();
    	int a=0,x=1;
    	while(ch<'0'||ch>'9')
        {
        	if(ch=='-') x=-x;
        	ch=getchar();
    	}
    	while(ch>='0'&&ch<='9')
    	{
    		a=(a<<1)+(a<<3)+(ch^48);
    		ch=getchar();
    	}
    	return a*x;
    }
    const int N=200;
    int n,m;
    int a[N],b[N],S[N][N],dp[N][N][2];
    int dis(int x,int y)     //求第x盏灯和第y盏灯之间的距离 
    {
    	return abs(a[x]-a[y]);
    }
    int main()
    {
    	n=read();m=read();
    	for(int i=1;i<=n;i++) 
    	{
    		a[i]=read();b[i]=read();
    	}
    	for(int i=1;i<=n;i++)
    	    for(int j=i;j<=n;j++)
    	        for(int k=i;k<=j;k++)
    	            S[i][j]+=b[k];      //预处理第i~j盏灯1s所消耗的电能 
    	memset(dp,0x3f,sizeof(dp));
    	dp[m][m][0]=dp[m][m][1]=0;      //边界条件:老张一开始在第m盏灯,所以代价为0 
    	for(int len=2;len<=n;len++)
    	{
    		for(int l=1;l+len-1<=n;l++)
    		{
    			int r=l+len-1;
    			dp[l][r][0]=min(dp[l+1][r][0]+dis(l+1,l)*(S[1][l]+S[r+1][n]),dp[l+1][r][1]+dis(r,l)*(S[1][l]+S[r+1][n]));
    			dp[l][r][1]=min(dp[l][r-1][0]+dis(l,r)*(S[1][l-1]+S[r][n]),dp[l][r-1][1]+dis(r-1,r)*(S[1][l-1]+S[r][n]));
    		}
    	}
    	printf("%d
    ",min(dp[1][n][0],dp[1][n][1]));  //最后老张在左端右端都行,取min 
    	return 0;
    }
    
  • 相关阅读:
    SVM
    决策树
    神经网络
    机器学习之降维方法
    机器学习之特征选择
    浏览器状态码大全
    哈希表
    社区发现算法总结(二)
    社区发现算法总结(一)
    聚类篇-------度量
  • 原文地址:https://www.cnblogs.com/xcg123/p/14050500.html
Copyright © 2020-2023  润新知