由题意知:a[i][j] % a[i -1][j] == 0 && a[i][j] % a[i][j - 1] == 0根据这个条件可以dfs
#include<bits/stdc++.h> using namespace std; #define For(i,a,b) for(int i = a; i <= b; i++) typedef long long ll; const int mod = 1e9 + 7; int dp[4] = {1,2,1009,2018}; int a[2100][2100],n,m,ans; void dfs(int x,int y){ if(x == n + 1){ // For(i,1,n) { // For(j, 1, m) cout << a[i][j] << " "; // cout << endl; // } ans++; }else{ if(x == 1){ For(i,0,3){ if(a[x][y - 1] % dp[i] == 0 && !a[x][y]){ a[x][y] = dp[i]; if(y != m) dfs(x,y + 1); else dfs(x + 1,1); a[x][y] = 0; } } }else if(y == 1){ For(i,0,3) { if (a[x - 1][y] % dp[i] == 0 && !a[x][y]){ a[x][y] = dp[i]; if(y != m) dfs(x,y + 1); else dfs(x + 1,1); a[x][y] = 0; } } }else if(x <= n && y <= m){ For(i,0,3){ if(a[x - 1][y] % dp[i] == 0 && a[x][y - 1] % dp[i] == 0 && !a[x][y]){ a[x][y] = dp[i]; if(y != m) dfs(x,y + 1); else dfs(x + 1,1); a[x][y] = 0; } } } } } int main(){ ios::sync_with_stdio(0); while(cin >> n >> m) { ans = 0; memset(a,0,sizeof(a)); a[1][1] = 2018; dfs(1, 2); cout << ans << endl; } }
得到:
行列 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 4 | 9 | 16 | 25 |
2 | 4 | 25 | 81 | 196 | 400 |
3 | 9 | 81 | 361 | 1156 | 3025 |
4 | 16 | 196 | 1156 | 4761 | 15625 |
5 | 25 | 400 | 3025 | 15625 | 63001 |
方案数上: dp[i][j] = dp[j][i] 除此之外,每个数都是平方数,那规律是不是在这里?
行列 | 1 | 2 | 3 | 4 | 5 |
1 | 12 | 22 | 32 |
42 |
52 |
2 | 22 | 52 | 92 | 142 | 202 |
3 | 32 |
92 | 192 | 342 | 552 |
4 | 42 | 142 | 342 | 692 | 1252 |
5 | 52 | 202 | 552 | 1252 | 2512 |
原题中说a[i][j]和a[i -1][j],a[i][j- 1]有关系,由此得到:dp[i][j] = (√dp[i -1][j] + √dp[i][j -1] + 1)2
为了进一步简化代码,dp[i][j]的平方 代表最后答案,也就是dp[i][j]是根号下的数字
综上 dp[i][j] = dp[i][j -1] + dp[i - 1][j] + 1; ans = pow( dp[i]pj] )
代码
#include<bits/stdc++.h> using namespace std; #define For(i,a,b) for(int i = a; i <= b; i++) #define int long long const int mod = 1e9 + 7; const int maxn = 2e3 + 10; int dp[maxn][maxn],n,m; signed main(){ ios::sync_with_stdio(0); For(i,1,2000) dp[1][i] = dp[i][1] = i; For(i,2,2000) For(j,2,2000) dp[i][j] = (dp[i][j - 1] + dp[i - 1][j] + 1) % mod; while(cin >> n >> m) cout << dp[n][m] * dp[n][m] % mod << endl; return 0; }