• 基于TensorFlow简单实现手写体数字识别


    本案例采用的是MNIST数据集[1],是一个入门级的计算机视觉数据集。

    MNIST数据集已经被嵌入到TensorFlow中,可以直接下载和安装。

    1 from tensorflow.examples.tutorials.mnist import input_data
    2 mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)

    此时,文件名为MNIST_data的数据集就下载下来了,其中one_hot=True为将样本标签转化为one_hot编码。

    接下来将MNIST的信息打印出来。

    3 print('输入数据:',mnist.train.images)
    4 print('输入数据的尺寸:',mnist.train.images.shape)
    5 import pylab
    6 im=mnist.train.images[0]  #第一张图片
    7 im=im.reshape(-1,28)
    8 pylab.imshow(im)
    9 pylab.show()

    输出为:

    输入数据: [[0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     ...
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]
     [0. 0. 0. ... 0. 0. 0.]]
    输入数据的尺寸: (55000, 784)

    MNIST的图片尺寸为28*28,数据集的存储把所有的图片存在一个矩阵中,将一张图片铺开存为一个行向量,从输出信息我们可以知道训练集包含55000张图片。

    MNIST中还包括测试集和验证集,大小分别为10000和5000。

    10 print("测试集大小:",mnist.test.images.shape)
    11 print("验证集大小:",mnist.validation.images.shape)

    测试集用于训练过程中评估模型的准确度,验证集用于最终评估模型的准确度。

    接下来就可以进行识别了,采用最简单的单层神经网络的方法,大致顺序就是定义输入-学习参数-学习参数和输入计算-计算损失-定义优化函数-迭代优化

     1 import tensorflow as tf
     2 tf.reset_default_graph()   #清除默认图形堆栈并重置全局默认图形
     3 #定义占位符
     4 x=tf.placeholder(tf.float32,[None,784])   #图像28*28=784
     5 y=tf.placeholder(tf.float32,[None,10])    #标签10类
     6 #定义学习参数
     7 w=tf.Variable(tf.random_normal([784,10])) #权值,初始化为正太随机值
     8 b=tf.Variable(tf.zeros([10]))             #偏置,初始化为0
     9 #定义输出
    10 pred=tf.nn.softmax(tf.matmul(x,w)+b)      #相当于单层神经网络,激活函数为softmax
    11 #损失函数
    12 cost=tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1))  #reduction_indices指定计算维度
    13 #优化函数
    14 optimizer=tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    15 #定义训练参数
    16 training_epochs=25   #训练次数
    17 batch_size=100       #每次训练图像数量
    18 display_step=1       #打印训练信息周期
    19 #保存模型
    20 saver=tf.train.Saver()
    21 model_path="log/521model.ckpt"
    22 #开始训练
    23 with tf.Session() as sess :
    24     sess.run(tf.global_variables_initializer())   #初始化所有参数
    25     for epoch in range(training_epochs) :
    26         avg_cost=0.                               #平均损失
    27         total_batch=int(mnist.train.num_examples/batch_size)   #计算总的训练批次
    28         for i in range(total_batch) :
    29             batch_xs, batch_ys=mnist.train.next_batch(batch_size)  #抽取数据
    30             _, c=sess.run([optimizer,cost], feed_dict={x:batch_xs, y:batch_ys})  #运行
    31             avg_cost+=c/total_batch
    32         if (epoch+1) % display_step == 0 :
    33             print("Epoch:",'%04d'%(epoch+1),"cost=","{:.9f}".format(avg_cost))
    34     print("Finished!")
    35     #测试集测试准确度
    36     correct_prediction=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    37     accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    38     print("Accuracy:",accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
    39     #保存模型
    40     save_path=saver.save(sess,model_path)
    41     print("Model saved in file: %s" % save_path)

    运行得到的结果:

    Epoch: 0001 cost= 7.973125283
    ...
    Epoch: 0025 cost= 0.898346810
    Finished!

    可以看出,损失降低了很多,得到的结果还不错,这只是简单的模型,使用复杂的模型可以得到更好的结果,将在以后给出。

    读取保存的模型,测试模型。

     1 print("Starting 2nd session...")
     2 with tf.Session() as sess :
     3     sess.run(tf.global_variables_initializer())
     4     #恢复模型及参数
     5     saver.restore(sess,model_path)
     6     
     7     #测试
     8     correct_prediction=tf.equal(tf.argmax(pred,1),tf.arg_max(y,1))
     9     #计算准确度
    10     accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    11     print("Accuracy: ",accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
    12     #计算输出
    13     output=tf.argmax(pred,1)
    14     batch_xs,batch_yx=mnist.train.next_batch(2)
    15     outputval,predv=sess.run([output,pred],feed_dict={x:batch_xs})
    16     print(outputval,predv,batch_ys)
    17     #显示图片1
    18     im=batch_xs[0]
    19     im=im.reshape(-1,28)
    20     pylab.imshow(im)
    21     pylab.show()
    22     #显示图片2
    23     im=batch_xs[1]
    24     im=im.reshape(-1,28)
    25     pylab.imshow(im)
    26     pylab.show()

    [1] http://yann.lecun.com/exdb/mnist/

  • 相关阅读:
    窗体吸附 Timer + 判断Location (简单实用)
    C# FTP 应用程序
    C# 加密方法汇总
    LINQ 标准的查询操作符 合计操作符 Count()、Sum()、Min()、Max()、Average()和Aggregate()
    委托中的协变和逆变(C# 编程指南)
    深入探讨C#序列化和反序列化
    grep 命令详解
    Oracle 数据库的启动和关闭的方式!
    linux 下的光盘拷贝
    C3P0连接池配置
  • 原文地址:https://www.cnblogs.com/xbyfight/p/11103979.html
Copyright © 2020-2023  润新知