• 【作业二】林轩田机器学习基石


    作业一被bubuko抓取了,要是能注明转载就更好了(http://bubuko.com/infodetail-916604.html

    作业二关注的题目是需要coding的Q16~Q20

    Q16理解了一段时间,题目阐述的不够详细。理解了题意之后,发现其实很简单。

    理解问题的关键是题目中给的's'是啥意思:

    (1)如果s=1,则意味着x>theta y预测为1,x<theta y预测为-1;

    (2)如果s=2,则以为着x<theta y预测为-1,x<theta y预测为1

    想明白这个事情之后,直接分theta大于0,小于0讨论,s=1 or s=-1把几种情况分别写一下,再合一起就得到答案了。

    Q17~Q18题目的代码如下

    #encoding=utf8
    import sys
    import numpy as np
    import math
    from random import *
    
    # generate input data with 20% flipping noise
    def generate_input_data(time_seed):
        np.random.seed(time_seed)
        raw_X = np.sort(np.random.uniform(-1,1,20))
        noised_y = np.sign(raw_X)*np.where(np.random.random(raw_X.shape[0])<0.2,-1,1)
        return raw_X, noised_y
    
    def calculate_Ein(x,y):
        # calculate median of interval & negative infinite & positive infinite
        thetas = np.array( [float("-inf")]+[ (x[i]+x[i+1])/2 for i in range(0, x.shape[0]-1) ]+[float("inf")] )
        Ein = x.shape[0]
        sign = 1
        target_theta = 0.0
        # positive and negative rays
        for theta in thetas:
            y_positive = np.where(x>theta,1,-1)
            y_negative = np.where(x<theta,1,-1)
            error_positive = sum(y_positive!=y)
            error_negative = sum(y_negative!=y)
            if error_positive>error_negative:
                if Ein>error_negative:
                    Ein = error_negative
                    sign = -1
                    target_theta = theta
            else:
                if Ein>error_positive:
                    Ein = error_positive
                    sign = 1
                    target_theta = theta
        # two corner cases
        if target_theta==float("inf"):
            target_theta = 1.0
        if target_theta==float("-inf"):
            target_theta = -1.0
        return Ein, target_theta, sign
    
    
    if __name__ == '__main__':
        T = 1000
        total_Ein = 0
        sum_Eout = 0
        for i in range(0,T):
            x,y = generate_input_data(i)
            curr_Ein, theta, sign = calculate_Ein(x,y)
            total_Ein = total_Ein + curr_Ein
            sum_Eout = sum_Eout + 0.5+0.3*sign*(abs(theta)-1)
        print (total_Ein*1.0) / (T*20)
        print (sum_Eout*1.0) / T

    迭代次数上偷懒了,用的1000次代替5000次的结果。

    coding算法思路没有什么复杂的,主要在于学习了python numpy的一些操作(如numpy.where, numpy.sign, numpy.sort)。

    具体的参考学习了讨论区的(https://class.coursera.org/ntumlone-002/forum/thread?thread_id=191)。

    Q19~Q20的代码如下,

    #encoding=utf8
    import sys
    import numpy as np
    import math
    from random import *
    
    def read_input_data(path):
        x = []
        y = []
        for line in open(path).readlines():
            items = line.strip().split(' ')
            tmp_x = []
            for i in range(0,len(items)-1): tmp_x.append(float(items[i]))
            x.append(tmp_x)
            y.append(float(items[-1]))
        return np.array(x),np.array(y)
    
    def calculate_Ein(x,y):
        # calculate median of interval & negative infinite & positive infinite
        thetas = np.array( [float("-inf")]+[ ( x[i]+x[i+1] )/2 for i in range(0, x.shape[0]-1) ]+[float("inf")] )
        Ein = x.shape[0]
        sign = 1
        target_theta = 0.0
        # positive and negative rays
        for theta in thetas:
            y_positive = np.where(x>theta,1,-1)
            y_negative = np.where(x<theta,1,-1)
            error_positive = sum(y_positive!=y)
            error_negative = sum(y_negative!=y)
            if error_positive>error_negative:
                if Ein>error_negative:
                    Ein = error_negative
                    sign = -1
                    target_theta = theta
            else:
                if Ein>error_positive:
                    Ein = error_positive
                    sign = 1
                    target_theta = theta
        return Ein, target_theta, sign
    
    if __name__ == '__main__':
        x,y = read_input_data("train.dat")
        # record optimal descision stump parameters
        Ein = x.shape[0]
        theta = 0
        sign = 1
        index = 0
        # multi decision stump optimal process
        for i in range(0,x.shape[1]):
            input_x = x[:,i]
            input_data = np.transpose(np.array([input_x,y]))
            input_data = input_data[np.argsort(input_data[:,0])]
            curr_Ein,curr_theta,curr_sign = calculate_Ein(input_data[:,0],input_data[:,1])
            if Ein>curr_Ein:
                Ein = curr_Ein
                theta = curr_theta
                sign = curr_sign
                index = i
        print (Ein*1.0)/x.shape[0]
        # test process
        test_x,test_y = read_input_data("test.dat")
        test_x = test_x[:,index]
        predict_y = np.array([])
        if sign==1:
            predict_y = np.where(test_x>theta,1.0,-1.0)
        else:
            predict_y = np.where(test_x<theta,1.0,-1.0)
        Eout = sum(predict_y!=test_y)
        print (Eout*1.0)/test_x.shape[0]

    这个代码基本复用了calculate_Ein这个函数,只是对corner cases稍作修改。

    其中有个地方遇到了些麻烦,就是要对输入的(xi,y)按照xi进行排序。

    之前用过lambda表达式,在这里学习了一种numpy.argsort()的方法(http://blog.csdn.net/maoersong/article/details/21875705

    根据数组的某一个dimension,对矩阵按行进行重新排序(原理是返回排序后的的航标,重新生成一个矩阵)

  • 相关阅读:
    phpstrom+xdebug+chrome+postman调试工具搭建
    Docker常用命令
    使用nginx+docker配置https负载均衡
    LVS三种模式的区别及负载均衡算法
    ELK Betas 6.0安装及使用
    Excel从低级到中级
    我回来了,哈哈
    刷电信版s710d卡在htc开机画面的解决办法
    基于cocos2d-android-1的FlyppyBird
    利息?hii
  • 原文地址:https://www.cnblogs.com/xbf9xbf/p/4595990.html
Copyright © 2020-2023  润新知