• 【Max Points on a Line 】cpp


    题目:

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

    代码:

    /**
     * Definition for a point.
     * struct Point {
     *     int x;
     *     int y;
     *     Point() : x(0), y(0) {}
     *     Point(int a, int b) : x(a), y(b) {}
     * };
     */
    class Solution {
    public:
        int maxPoints(vector<Point>& points) {
                // least points case
                if ( points.size()<3 ) return points.size();
                // search for max points
                int global_max_points = 1; 
                map<double, int> slope_counts;
                for ( int i=0; i<points.size(); ++i )
                {
                    slope_counts.clear();
                    int same_point = 0;
                    int local_max_point = 0;
                    for ( int j=0; j<points.size(); ++j )
                    {
                        // the exactly same point
                        if ( j==i ) continue;
                        // initial as the same x case
                        double slope = std::numeric_limits<double>::infinity();
                        // same point case
                        if ( points[i].x==points[j].x && points[i].y==points[j].y )
                        { same_point++; continue; }
                        // normal case
                        if ( points[i].x!=points[j].x ) 
                        { slope = 1.0*(points[i].y - points[j].y) / (points[i].x - points[j].x); }
                        // increase slope and its counts
                        slope_counts[slope] += 1;
                        // update local max point
                        local_max_point = std::max(local_max_point, slope_counts[slope]);
                    }
                    // add the num of same point to local max point
                    local_max_point = local_max_point + same_point + 1;
                    // update global max point
                    global_max_points =  std::max(global_max_points, local_max_point);
                }
                return global_max_points;
        }
    };

    tips:

    以每个点为中心 & 找到其余所有点与该点构成直线中斜率相同的,必然为多点共线的

    几个特殊case:

    1. 相同点 (保留下来坐标相同的点,最后计算最多共线的点时补上这些相同点的数量)

    2. x坐标相等的点 (定义slope为double 无穷大)

    3. 每次在更新local_max_point时,不要忘记加上1(即算上该点本身)

    ===================================

    学习一个提高代码效率的技巧,如果线段points[i]~points[j]在最多点的直线上,那么线段points[j]~points[i]也在最多点的直线上,所以j=i+1开始即可。

    /**
     * Definition for a point.
     * struct Point {
     *     int x;
     *     int y;
     *     Point() : x(0), y(0) {}
     *     Point(int a, int b) : x(a), y(b) {}
     * };
     */
    class Solution {
    public:
        int maxPoints(vector<Point>& points) {
                // least points case
                if ( points.size()<3 ) return points.size();
                // search for max points
                int global_max_points = 1; 
                map<double, int> slope_counts;
                for ( int i=0; i<points.size()-1; ++i )
                {
                    slope_counts.clear();
                    int same_point = 0;
                    int local_max_point = 0;
                    for ( int j=i+1; j<points.size(); ++j )
                    {
                        // initial as the same x case
                        double slope = std::numeric_limits<double>::infinity();
                        // same point case
                        if ( points[i].x==points[j].x && points[i].y==points[j].y )
                        { same_point++; continue; }
                        // normal case
                        if ( points[i].x!=points[j].x ) 
                        { slope = 1.0*(points[i].y - points[j].y) / (points[i].x - points[j].x); }
                        // increase slope and its counts
                        slope_counts[slope] += 1;
                        // update local max point
                        local_max_point = std::max(local_max_point, slope_counts[slope]);
                    }
                    // add the num of same point to local max point
                    local_max_point = local_max_point + same_point + 1;
                    // update global max point
                    global_max_points =  std::max(global_max_points, local_max_point);
                }
                return global_max_points;
        }
    };

    tips:

    减少了内层循环的遍历次数,提高了程序运行效率。

    =====================================

    第二次过这道题,上来想到了正确的思路,但是没有敢肯定;注意samePoints和算上当前点本身。

    /**
     * Definition for a point.
     * struct Point {
     *     int x;
     *     int y;
     *     Point() : x(0), y(0) {}
     *     Point(int a, int b) : x(a), y(b) {}
     * };
     */
    class Solution {
    public:
        int maxPoints(vector<Point>& points) {
                if (points.empty()) return 0;
                map<double, int> slopeCount;
                int globalMax = 1;
                for ( int i=0; i<points.size(); ++i )
                {
                    slopeCount.clear();
                    int samePoints = 0;
                    int x = points[i].x;
                    int y = points[i].y;
                    for (int j=i+1; j<points.size(); ++j )
                    {
                        int xx = points[j].x;
                        int yy = points[j].y;
                        if ( xx==x && yy==y )
                        {
                            samePoints++;
                            continue;
                        }
                        if ( xx==x )
                        {
                            slopeCount[numeric_limits<double>::infinity()]++;
                            continue;
                        }
                        slopeCount[1.0*(y-yy)/(x-xx)]++;
                    }
                    // count max
                    int local = 0;
                    for ( map<double, int>::iterator i=slopeCount.begin(); i!=slopeCount.end(); ++i )
                    {
                        local = max(local, i->second);
                    }
                    globalMax = max(globalMax,local+samePoints+1);
                }
                return globalMax;
        }
    };
  • 相关阅读:
    Java之三元运算符
    Linux之用户和用户组管理指令
    Java之键盘输入语句Scanner
    进程同步和进程互斥
    Java之运算符优先级
    Java之单分支和双分支程序流程基本使用
    Python chr 函数 Python零基础入门教程
    Python globals 函数 Python零基础入门教程
    Python filter 函数 Python零基础入门教程
    Python locals 函数 Python零基础入门教程
  • 原文地址:https://www.cnblogs.com/xbf9xbf/p/4564919.html
Copyright © 2020-2023  润新知