题目:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
代码:
class Solution { public: int minPathSum(vector<vector<int>>& grid) { if ( grid.empty() ) return 0; const int m = grid.size(); const int n = grid[0].size(); vector<int> dp(n, INT_MAX); dp[0] = 0; for ( int i=0; i<m; ++i ) { dp[0] += grid[i][0]; for ( int j=1; j<n; ++j ) { dp[j] = grid[i][j] + std::min(dp[j-1], dp[j]); } } return dp[n-1]; } };
tips:
典型的“DP+滚动数组”,时间复杂度O(m*n),空间复杂度O(n)。
=============================================
第二次,用偷懒的做法了,二维dp直接写了。
class Solution { public: int minPathSum(vector<vector<int>>& grid) { if ( grid.empty() ) return 0; int dp[grid.size()][grid[0].size()]; fill_n(&dp[0][0], grid.size()*grid[0].size(), 0); dp[0][0] = grid[0][0]; for ( int i=1; i<grid[0].size(); ++i ) dp[0][i] = dp[0][i-1]+grid[0][i]; for ( int i=1; i<grid.size(); ++i ) dp[i][0] = dp[i-1][0]+grid[i][0]; for ( int i=1; i<grid.size(); ++i ) { for ( int j=1; j<grid[i].size(); ++j ) { dp[i][j] = min(dp[i][j-1],dp[i-1][j])+grid[i][j]; } } return dp[grid.size()-1][grid[0].size()-1]; } };