• 【Triangle 】cpp


    题目:

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note:
    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle

    代码:

    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) {
                if (triangle.size()<1) return 0;
                int min_sum = triangle[0][0];
                for ( int i = 1; i<triangle.size(); ++i )
                {
                    for (int j = 0; j<triangle[i].size(); ++j )
                    {
                        if (j==triangle[i].size()-1)
                        {
                            triangle[i][j] += triangle[i-1][j-1];
                            min_sum = std::min(min_sum, triangle[i][j]);
                        }
                        else if ( j==0 )
                        {
                            triangle[i][0] += triangle[i-1][0];
                            min_sum = triangle[i][j];
                        }
                        else
                        {
                            triangle[i][j] += std::min(triangle[i-1][j-1], triangle[i-1][j]);
                            min_sum = std::min(min_sum, triangle[i][j]);
                        }
    
                    }
                }
                return min_sum;
        }
    };

    tips:

    这种做法时间复杂度O(n),空间复杂度O(1)。

    思路很简单,就是遍历每层元素的同时,把这一个元素的值更新为走到该位置的最小路径和。

    min_sum这个遍历记录当前最小值,其实只有当遍历到最后一层的时候才有用,偷懒就没有改动了。

    但是有个缺点就是把原来的triangle的结构都破坏了,研究一下用O(n)额外空间,但不破坏原有triangle的做法。

    =======================================

    似乎脑子里有印象:遍历每层数组的时候,可以从后往前算,可以比较顺畅。顺着思路,就写了下面的代码,不破坏triangle的原有结构,也可以在O(n)额外空间的条件下AC。

    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) {
                if (triangle.size()<1) return 0;
                vector<int> extra(triangle.size(),INT_MAX);
                extra[0] = triangle[0][0];
                for ( int i = 1; i<triangle.size(); ++i )
                {
                    for ( int j = triangle[i].size()-1; j>=0; --j )
                    {
                        if ( j==0 )
                        {
                            extra[j] = triangle[i][j] + extra[0];
                        }
                        else
                        {
                            extra[j] = triangle[i][j] + std::min(extra[j-1], extra[j]);
                        }
                    }
                }
                int min_sum = extra[0];
                for ( int i = 1; i < extra.size(); ++i ) min_sum = std::min(min_sum, extra[i]);
                return min_sum;
        }
    };

    tips:

    这里开一个额外vector(即extra),大小为n,数组元素初值都设为INT_MAX(后面解释为什么要设为INT_MAX)。

    extra用来存放“到当前层的各个位置的最短路径长度和是多少”。

    为什么遍历每层都要从后往前遍历呢?

    举例说明如下:

    以原题给的case为例

    i = 1时

    extra == [2,INT_MAX...]

    triangle[1] == [3,4]

    观察两种遍历triangle[1]的方向:

    a) 先遍历triangle[1][0]则更新extra[0]为5,即extra == [5,INT_MAX...]

    b) 这时,再遍历triangle[1][1],判断extra[0]与extra[1]哪个小,再与triangle[1][1]相加,再赋值给extra[1]。

    这里问题就凸显出来了,此时extra[0]已经不是最开始的2了,已经被我们更新过后丢掉了(此时可以采用补救措施,例如添加一个中间变量tmp之类的)。

    现在换一种思路,改变遍历triangle[1]的方向

    a) 遍历triangle[1][1],则更新extra[1]为6

    b) 这时再遍历triangle[1][0],更新extra[0]为extra[0]+triangle[1][0]=5;结果正确。

    这样对比就可以看出来从后向前遍历的好处,因为下一层的数组总比上一层的数组多出来一个元素;因此再更新时,先更新extra的最后一个位置并没有影响到上一轮extra得到的结果(于是也就不用什么tmp中间变量之类的了)。

    还有一个细节没有说:为啥初始化extra的时候都初始化为INT_MAX呢?这是为了代码的优雅性。

    通过题意我们可以知道,其实每层的最后一个元素j只能由上一层的的最后一个元素j-1得来。

    为了保持“extra[j] = triangle[i][j] + std::min(extra[j-1], extra[j]);”的优雅性,因此初始化为INT_MAX;如果j==triangle[i].size()-1的时候,我们已经知道一定是选择extra[j-1]而不是extra[j],因为此时的extra[j]就是INT_MAX。

    这样一来,只用处理j==0的一种corner case了。

    =================================

    看到一种更屌爆的做法,完全不用判断各种corner case,思路如下:

    从下往上遍历,牺牲triangle的原有结构。

    ======================================

    第二次过这道题,用O(n)复杂度,单独处理最左边的元素。

    class Solution {
    public:
        int minimumTotal(vector<vector<int>>& triangle) {
                if ( triangle.empty() ) return 0;
                vector<int> minPath(triangle.size(),INT_MAX);
                minPath[0] = triangle[0][0];
                for ( int i=1; i<triangle.size(); ++i )
                {
                    for ( int j=triangle[i].size()-1; j>0; --j )
                    {
                        minPath[j] = min(minPath[j-1], minPath[j]) + triangle[i][j];
                    }
                    minPath[0] += triangle[i][0];
                }
                int ret = minPath[0];
                for ( int i=1; i<minPath.size(); ++i ) ret = min(ret, minPath[i]);
                return ret;
    
        }
    };
  • 相关阅读:
    Map(关联式容器)
    List(双向链表)
    ubuntu新建、删除用户
    rbenv安装本地ruby安装包
    pycharm显示Unresolved reference
    rails 查看项目的所有路由
    rails 表单中默认值
    rails 辅助方法
    Ubuntu18.04网易云音乐双击运行
    apm飞行模式
  • 原文地址:https://www.cnblogs.com/xbf9xbf/p/4540535.html
Copyright © 2020-2023  润新知