求允许重叠的至少出现k次的子串的最大长度
二分答案,将高度数组分组,若某一组有k个数(或以上)满足高度大于k,则可行
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 using namespace std; 6 7 const int maxn = 2e4 + 10; 8 9 int n, t, k; 10 int S[maxn]; 11 int rnk[maxn]; 12 int tmp[maxn]; 13 int sa[maxn]; 14 int lcp[maxn]; 15 16 bool compare_sa(int i, int j) { 17 if (rnk[i] != rnk[j]) { 18 return rnk[i] < rnk[j]; 19 } else { 20 int ri = i + k <= n ? rnk[i + k] : -1; 21 int rj = j + k <= n ? rnk[j + k] : -1; 22 return ri < rj; 23 } 24 } 25 26 void construct_sa(int* S, int *sa) { 27 for (int i = 0; i <= n; i++) { 28 sa[i] = i; 29 rnk[i] = i < n ? S[i] : -1; 30 } 31 for (k = 1; k <= n; k *= 2) { 32 sort(sa, sa + n + 1, compare_sa); 33 tmp[sa[0]] = 0; 34 for (int i = 1; i <= n; i++) { 35 tmp[sa[i]] = tmp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0); 36 } 37 for (int i = 0; i <= n; i++) { 38 rnk[i] = tmp[i]; 39 } 40 } 41 } 42 43 void construct_lcp(int *S, int *sa, int *lcp) { 44 for (int i = 0; i <= n; i++) rnk[sa[i]] = i; 45 int h = 0; 46 lcp[0] = 0; 47 for (int i = 0; i < n; i++) { 48 int j = sa[rnk[i] - 1]; 49 if (h > 0) h--; 50 for (; j + h < n && i + h < n; h++) { 51 if (S[i + h] != S[j + h]) break; 52 } 53 lcp[rnk[i] - 1] = h; 54 } 55 } 56 57 bool ck(int m) { 58 int cnt = 1; 59 for (int i = 1; i < n; i++) { 60 if (lcp[i] >= m) { 61 cnt++; 62 } else { 63 cnt = 1; 64 } 65 if (cnt >= t) { 66 return true; 67 } 68 } 69 return false; 70 } 71 72 int main() { 73 scanf("%d%d", &n, &t); 74 for (int i = 0; i < n; i++) { 75 scanf("%d", &S[i]); 76 } 77 construct_sa(S, sa); 78 construct_lcp(S, sa, lcp); 79 int dn = 1, up = n + 1; 80 while (up - dn > 1) { 81 int mid = (dn + up) / 2; 82 if (ck(mid)) { 83 dn = mid; 84 } else { 85 up = mid; 86 } 87 } 88 printf("%d ", dn); 89 return 0; 90 }
求一个串的所有不同子串数目
总的子串数目减去重复数(利用高度数组读得)
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int T; int k; int n; const int maxn = 1e3 + 10; int rnk[maxn], sa[maxn], tmp[maxn], lcp[maxn]; string S; bool compare_sa(int i, int j) { if (rnk[i] != rnk[j]) { return rnk[i] < rnk[j]; } else { int ri = i + k <= n ? rnk[i + k] : -1; int rj = j + k <= n ? rnk[j + k] : -1; return ri < rj; } } void construct_sa(string S, int *sa) { n = S.length(); for (int i = 0; i <= n; i++) { sa[i] = i; rnk[i] = i < n ? S[i] : -1; } for (k = 1; k <= n; k *= 2) { sort(sa, sa + n + 1, compare_sa); tmp[sa[0]] = 0; for (int i = 1; i <= n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0); } for (int i = 0; i <= n; i++) { rnk[i] = tmp[i]; } } } void construct_lcp(string S, int* sa, int* lcp) { for (int i = 0; i <= n; i++) rnk[sa[i]] = i; int h = 0; lcp[0] = 0; for (int i = 0; i < n; i++) { int j = sa[rnk[i] - 1]; if (h > 0) h--; for (; i + h < n && j + h < n; h++) { if (S[i + h] != S[j + h]) break; } lcp[rnk[i] - 1] = h; } } int main() { cin >> T; while (T--) { cin >> S; construct_sa(S, sa); construct_lcp(S, sa, lcp); int ans = 0; for (int i = 1; i <= n; i++) { ans += n - sa[i] - lcp[i - 1];//i-1 } printf("%d ", ans); } return 0; }
求一个字符串的所有前缀在字符串中出现次数的总合
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 1e5 + 10; int n, k; int tmp[maxn], rnk[maxn], sa[maxn], lcp[maxn]; char S[maxn]; bool compare_sa(int i, int j) { if (rnk[i] != rnk[j]) { return rnk[i] < rnk[j]; } else { int ri = i + k <= n ? rnk[i + k] : -1; int rj = j + k <= n ? rnk[j + k] : -1; return ri < rj; } } void construct_sa(int *sa) { for (int i = 0; i <= n; i++) { sa[i] = i; rnk[i] = i < n ? S[i] : -1; } for (k = 1; k <= n; k *= 2) { sort(sa, sa + n + 1, compare_sa); tmp[sa[0]] = 0; for (int i = 1; i <= n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0); } for (int i = 0; i <= n; i++) { rnk[i] = tmp[i]; } } } void construct_lcp(int* sa, int* lcp) { for (int i = 0; i <= n; i++) rnk[sa[i]] = i; int h = 0; for (int i = 0; i <= n; i++) { int j = sa[rnk[i] - 1]; if (h > 0) h--; for (; j + h < n && i + h < n; h++) { if (S[i + h] != S[j + h]) break; } lcp[rnk[i] - 1] = h; } } int main() { while (~scanf("%s", S)) { n = strlen(S); construct_sa(sa); construct_lcp(sa, lcp); LL ans = n; int t = rnk[0]; int match = n; while (t < n) { match = min(match, lcp[t]); ans += match; t++; } t = rnk[0]; match = n; while (t) { match = min(match, lcp[t - 1]); ans += match; t--; } printf("%lld ", ans % 256); } return 0; }