• BFS经典算法


    1. Bipartite: 

    Determine if an undirected graph is bipartite. A bipartite graph is one in which the nodes can be divided into two groups such that no nodes have direct edges to other nodes in the same group.

    Examples

    1  --   2

        /   

    3  --   4

    is bipartite (1, 3 in group 1 and 2, 4 in group 2).

    1  --   2

        /   |

    3  --   4

    is not bipartite.

    Assumptions

    • The graph is represented by a list of nodes, and the list of nodes is not null.

    分析:

    • 假设两个组:0和1
    • 定义一个hashmap来存放graphNode和组号,并且可以用.containskey()来确定它有没有被访问过
    • 从第一个Node开始expand,然后去看它的邻居是否被visited过:1. 如果有那就看它的key(组号)是不是和这个Node相等,如果相等,直接返回false;如果不想等,ignore;

      2. 如果没有,那就把它存入hashmap中,它的key(组号)和这个Node相反

    • 有任何一个node返回false就可以直接返回false了
    • 全部走完,都没有false,那就true

    代码如下:

    public class GraphNode {
        public int key;
        public List<GraphNode> neighbors;
        public GraphNode(int key) {
          this.key = key;
          this.neighbors = new ArrayList<GraphNode>();
       }
     }
    
    public class Solution {
      public boolean isBipartite(List<GraphNode> graph) {
        // write your solution here
        HashMap<GraphNode, Integer> visited = new HashMap<GraphNode, Integer>();
        for(int i = 0; i < graph.size(); i++) {
           boolean res = BFS(graph.get(i), visited);
           if(res == false) {
             return false; 
           }
        }    
        return true;
      }
      private boolean BFS(GraphNode node, HashMap<GraphNode, Integer> visited) {
        //if this node has been searched, then it does not need to be searched again
         if(visited.containsKey(node)) {
           return true; 
         }
         //two group:0,1
         Queue<GraphNode> q = new LinkedList<GraphNode>();
         q.offer(node);
         visited.put(node, 0);//mark the node as group 0
         //generate its neighbor
         while(!q.isEmpty()) {
           GraphNode cur = q.poll(); 
           for(GraphNode neighbor : cur.neighbors) {
             if(!visited.containsKey(neighbor)) {
                if(visited.get(cur) == 0) {
                  visited.put(neighbor, 1);
                }else {
                  visited.put(neighbor, 0);
                }
              q.offer(neighbor);
             }else {
               if(visited.get(neighbor) == visited.get(cur)) {
                  return false;
               }
             }
           }
         }
        return true;
      }
    }
    View Code

    2. Dijkstra's Algorithm:

    find the shortest path cost from a single node to any other nodes in that graph

    主要用到的数据结构是priority queue

    Initial state: start node

    Node expansion/generation node:这里的expansion相当于pop,generation相当于push

    termination condition:所有点都计算完毕,也就是p_queue为空

    具体思路如下:

     

    特性:1. 一个node只能被expand有且只有一次

       2. 但是一个node可以被generate多次,且每次cost都减少

       3. 所有被expanded的node都是单调递增的:因为每次pop()出来最小的元素,所以按从小到大pop

         4. TC=O(nlogn),n个node,pop n次,每次logn

       5. 当一个node被pop出来的时候,它的cost是它的最短距离

    * how to find the shortest path between a pair of node: terminate condition: when the targer node is expanded

    应用:Kth smallest number in sorted matrix

    Given a matrix of size N x M. For each row the elements are sorted in ascending order, and for each column the elements are also sorted in ascending order. Find the Kth smallest number in it.

    例如:

    { {1,  3,   5,  7},

      {2,  4,   8,   9},

      {3,  5, 11, 15},

      {6,  8, 13, 18} }

    • the 5th smallest number is 4
    • the 8th smallest number is 6

    思路:

    1. Initial state:matrix[0][0]

    2. node expansion/generate rule:

      expand node[i][j]

      generate node[i+1][j] node[i][j+1]

    3. terminate condition:Kth smallest number pop出

    • 由于可能有重复元素,我们定义一个boolean[][] visited来记录这个点是否被visited过
    • 为了方便记录每一个元素的坐标,写一个class graph,里面有这个点的横纵坐标和大小
    • 因为要用minHeap,所以要override比较器
    • BFS
    • generate node的条件是1. 不越界 2. 没有被visited过

    代码如下:

    public class kSmalleasMatrix {
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            //[[[1,3,5,7],[2,4,8,9],[3,5,11,15],[6,8,13,18]],16]
            int[][] matrix = {{1,3,5,7}, 
                              {2,4,8,9}, 
                              {3,5,11,15},
                              {6,8,13,18}};
            int k = 16;
            System.out.println(kthSmallest(matrix, k));
        }
        
        public static int kthSmallest(int[][] matrix, int k) {
            int col = matrix[0].length;
            int row = matrix.length;
            Queue<graph> heap=new PriorityQueue<>(new MyComparator());
            boolean[][] visited = new boolean[row][col];
            int count = 1;
            heap.offer(new graph(0, 0, matrix[0][0]));
            visited[0][0] = true;
            while(count < k) {
                graph cur = heap.poll();
                if(cur.row + 1 < row && !visited[cur.row + 1][cur.col]) {
                    heap.offer(new graph(cur.row + 1, cur.col, matrix[cur.row + 1][cur.col]));
                    visited[cur.row + 1][cur.col] = true;
                }
                if(cur.col + 1 < col && !visited[cur.row][cur.col + 1]) {
                    heap.offer(new graph(cur.row, cur.col + 1, matrix[cur.row][cur.col + 1]));
                    visited[cur.row][cur.col + 1] = true;
                }
                count++;
            }
            return heap.poll().value;
        } 
    
    }
    class graph {
        int row;
        int col;
        int value;
        graph(int row, int col, int value) {
            this.row = row;
            this.col = col;
            this.value = value;
        }
    }
    
    class MyComparator implements Comparator<graph>{
        @Override//Annotation,告诉编译器这是一个重写的
        public int compare(graph c1, graph c2) {
            if(c1.value == c2.value) {
                return 0;
            }
            return c1.value < c2.value ? -1 : 1;
        }
        
    }
    View Code
  • 相关阅读:
    最受欢迎的北大通选课导读·1[精品]
    社会保险,
    养老金的计算,
    毫秒 后的一个计算,
    返回格式 的数据结构再次改造,
    阶段状态池子,
    生活,-摘
    融合,
    tableview 也可以实现这个效果,
    字体大小 一致起来,
  • 原文地址:https://www.cnblogs.com/x1mercy/p/8667803.html
Copyright © 2020-2023  润新知