• Tensorflow--MNIST简单全连接层分类


    # @time    : 2020/1/5 22:39
    # @author  : x1aolata
    # @file    : mnist_train.py
    # @script  : 训练简单手写数字识别模型-直接全连接-用于测试模型保存与转化
    
    
    from __future__ import print_function
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    from tensorflow.python.framework import graph_util
    
    # number 1 to 10 data 加载数据集
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
    def compute_accuracy(v_xs, v_ys):
        global prediction
        y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
        correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
        return result
    
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    xs = tf.placeholder(tf.float32, [None, 784], name='x_input') / 255.  # 28x28
    ys = tf.placeholder(tf.float32, [None, 10], name='y-input')
    
    keep_prob = tf.constant(0.5)
    
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    # print(x_image.shape)  # [n_samples, 28,28,1]
    
    ## fc1 layer ##
    W_fc1 = weight_variable([28 * 28, 1024])
    b_fc1 = bias_variable([1024])
    # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
    
    h_fc1 = tf.nn.relu(tf.matmul(xs, W_fc1) + b_fc1)
    # h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    ## fc2 layer ##
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    # the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                  reduction_indices=[1]))  # loss
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    sess = tf.Session()
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(1000):
        pre_num = tf.argmax(prediction, 1, output_type='int32', name="output")
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
        if i % 50 == 0:
            print(compute_accuracy(
                mnist.test.images, mnist.test.labels))
    
    # 保存训练好的模型
    # 形参output_node_names用于指定输出的节点名称,output_node_names=['output']对应pre_num=tf.argmax(y,1,name="output"),
    output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=['output'])
    with tf.gfile.FastGFile('model/mnist_01.pb', mode='wb') as f:  # ’wb’中w代表写文件,b代表将数据以二进制方式写入文件。
        f.write(output_graph_def.SerializeToString())
    
    
  • 相关阅读:
    Unity3D笔记 英保通三 脚本编写 、物体间通信
    Unity3D笔记 英保通二
    Unity3D 面试ABC
    Unity3D 记第一次面试
    Unity3D笔记 英保通一
    (转)关于如何学好游戏3D引擎编程的一些经验
    Java_异常
    Java_多态
    Java_继承(下)
    Java_继承(上)
  • 原文地址:https://www.cnblogs.com/x1aolata/p/12165716.html
Copyright © 2020-2023  润新知