• 贪心算法单源点最短路径


     Dijkstra算法是解单源最短路径问题的贪心算法。其基本思想是,设置顶点集合点集合S并不断地做贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的其一顶点。把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组Distance记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶占,Distance就记录了从源到所有其它顶点之间最短路径长度。
        例如下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点最短路径的过程列表在下表中。

    算法过程描述:
        表格中默认选取的起始顶点为1顶点,所以本问题就转化为求解1顶点到2, 3, 4, 5这几个顶点的最短路径。首先初始条件列出1顶点到2, 3, 4, 5各个顶点的距离,这个距离直接在图的存储邻接矩阵中得到,选取距离最近的一个也就是2顶点加入集合S,下面要进行的是比较关键的一步,这个时候应该去获取3, 4, 5三个顶点到集合S的最短距离(从1顶点出发,可以经过S中的任意顶点):将1到2顶点的距离加上2到各个点的距离,然后用这个距离来同1到各个顶点的距离相比较,谁小就取谁,以此类推,然后每次取Distance[]最小的值进入集合S。
        这样下去,Distance[]中存放的就是每个顶点到集合S的最短距离,比如当前的集合只有1, 2,按照规则顶点4应该入选进集合S,因为Distance[3]没有入选集合的顶点中对应的Distance[]最小的顶点。现在需要计算3和5到新集合S={1, 2, 4}的最短距离,这个时候就只需要将Distance[2]和Distance[4]中的值(现在这里面的值表示集合S={1, 2}到顶点3和5顶点的最短距离),但是现在集合中加入了顶点4,怎么计算?计算方法如下:
    Distance[3] + 邻接矩阵中顶点4到顶点3的距离 < Distance[2] ?
    Distance[3]:(顶点4到S={1, 2}的最短距离)
    Distance[2]: (顶点3到S={1, 2}的最短距离)
    如果这个小于成立,那么很明显新的集合到顶点3的最小距离应该是先从S={1, 2}到顶点4的最短距离,然后再从顶点4到顶点3。

    由于每一次的比较都是在上一次集合的最优结果中计算的,所以新计算出来的顶点3到集合S={1, 2, 4}的最短距离也是全局最优的。

    对应的C语言代码如下:

    #include <stdio.h>
    
    #define M    65535 //无穷大
    #define N    5 //顶点数
    
    //Dijkstra算法函数,求给定顶点到其余各点的最短路径
    //参数:邻接矩阵、出发点的下标、结果数组、路径前一点记录
    void Dijkstra(int Cost[][N], int v0, int Distance[], int prev[])
    {
        int s[N];
        int mindis,dis;
        int i, j, u;
        //初始化
        for(i=0; i<N; i++)
        {
            Distance[i] = Cost[v0][i];
            s[i] = 0;
            if(Distance[i] == M)
                prev[i] = -1;
            else
                prev[i] = v0;
        }
        Distance[v0] = 0;
        s[v0] = 1; //标记v0
        //在当前还未找到最短路径的顶点中,
        //寻找具有最短距离的顶点
        for(i=1; i < N; i++)
        {//每循环一次,求得一个最短路径
            mindis = M;
            u = v0;
            for (j=0; j < N; j++) //求离出发点最近的顶点
                if(s[j]==0 && Distance[j]<mindis)
                {
                    mindis = Distance [j];
                    u = j;
                } // if语句体结束,j循环结束
            s[u] = 1;
            for(j=0; j<N; j++) //修改递增路径序列(集合)
            if(s[j]==0 && Cost[u][j]<M)
            { //对还未求得最短路径的顶点
                //求出由最近的顶点 直达各顶点的距离
                dis = Distance[u] +Cost[u][j];
                // 如果新的路径更短,就替换掉原路径
    
                if(Distance[j] > dis)
                {
                    Distance[j] = dis;
                    prev[j] = u;
                }
            } // if 语句体结束,j循环结束
        } // i循环结束
    }
    // 输出最短路径
    // 参数:路径前一点记录、出发点的下标、到达点下标
    void PrintPrev(int prev[],int v0,int vn)
    {
        int tmp = vn;
        int i, j;
        //临时存路径
        int tmpprv[N];
        //初始化数组
        for(i=0; i < N; i++)
            tmpprv[i] = 0;
    
        //记录到达点下标
        tmpprv[0] = vn+1;
        //中间点用循环记录
        for(i =0, j=1; j < N ;j++)
        {
            if(prev[tmp]!=-1 && tmp!=0)
            {
                tmpprv[i] = prev[tmp]+1;
                tmp = prev[tmp];
                i++;
            }
            else break;
        }
    
        //输出路径,数组逆向输出
        for(i=N-1; i >= 0; i--)
        {
            if(tmpprv[i] != 0)
            { //排除0元素
                printf("V%d", tmpprv[i]);
                if(i)  //不是最后一个输出符号 
                    printf("-->");
            }
        }
        printf("-->V%d", vn+1);
    }
    //主函数
    int main()
    {
        //给出有向网的顶点数组
        char *Vertex[N]={"V1", "V2", "V3", "V4", "V5"};
        //给出有向网的邻接矩阵
        int Cost[N][N]={
            {0, 10, M, 30, 100},
            {M, 0, 50, M, M},
            {M, M, 0, M, 10},
            {M, M, 20, 0, 60},
            {M, M, M, M, 0},
        };
        int Distance[N]; //存放求得的最短路径长度
        int prev[N];  //存放求得的最短路径
        int i;
        //调用Dijkstra算法函数,求顶点V1到其余各点的最短路径
        //参数:邻接矩阵、顶点数、出发点的下标、 结果数组
        Dijkstra(Cost, 0, Distance, prev);
        for(i=0; i < N; i++)
        {
            //输出最短路径长度
            printf("%s-->%s:%d	", Vertex[0], Vertex[i], Distance[i]);
            //输出最短路径
            PrintPrev(prev, 0, i);
            printf("
    ");
        }
    
        return 0;
    }

    程序运行结果截图:

  • 相关阅读:
    Android布局控件
    XAMPP里tomcat启动报错:Make sure you have Java JDK or JRE installed and the required ports are free
    poj 北京大学 2014研究生推免上机考试(校内)
    2014北大计算机学科保研直博夏令营上机poj考试
    《C++Primer》第四版学习笔记--持续更新中
    poj1986:Distance Queries
    poj2533:最长上升子序列
    poj1062:昂贵的聘礼
    黑书贪心例题之钓鱼 poj1042:Gone Fishing
    转:最小没出现的整数
  • 原文地址:https://www.cnblogs.com/x-ll123/p/8205304.html
Copyright © 2020-2023  润新知