• 【源码解读】pix2pix(一):训练


    源码地址:https://github.com/mrzhu-cool/pix2pix-pytorch

    相比于朱俊彦的版本,这一版更加简单易读

    训练的代码在train.py,开头依然是很多代码的共同三板斧,加载参数,加载数据,加载模型

    命令行参数

    # Training settings
    parser = argparse.ArgumentParser(description='pix2pix-pytorch-implementation')
    parser.add_argument('--dataset', required=True, help='facades')
    parser.add_argument('--batch_size', type=int, default=1, help='training batch size')
    parser.add_argument('--test_batch_size', type=int, default=1, help='testing batch size')
    parser.add_argument('--direction', type=str, default='b2a', help='a2b or b2a')
    parser.add_argument('--input_nc', type=int, default=3, help='input image channels')
    parser.add_argument('--output_nc', type=int, default=3, help='output image channels')
    parser.add_argument('--ngf', type=int, default=64, help='generator filters in first conv layer')
    parser.add_argument('--ndf', type=int, default=64, help='discriminator filters in first conv layer')
    parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count')
    parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate')
    parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero')
    parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
    parser.add_argument('--lr_policy', type=str, default='lambda', help='learning rate policy: lambda|step|plateau|cosine')
    parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations')
    parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
    parser.add_argument('--cuda', action='store_true', help='use cuda?')
    parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use')
    parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
    parser.add_argument('--lamb', type=int, default=10, help='weight on L1 term in objective')
    opt = parser.parse_args()

    数据

    print('===> Loading datasets')
    root_path = "dataset/"
    train_set = get_training_set(root_path + opt.dataset, opt.direction)
    test_set = get_test_set(root_path + opt.dataset, opt.direction)
    training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True)
    testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.test_batch_size, shuffle=False)

    模型

    print('===> Building models')
    net_g = define_G(opt.input_nc, opt.output_nc, opt.ngf, 'batch', False, 'normal', 0.02, gpu_id=device)
    net_d = define_D(opt.input_nc + opt.output_nc, opt.ndf, 'basic', gpu_id=device)

    优化器,损失函数

    criterionGAN = GANLoss().to(device)
    criterionL1 = nn.L1Loss().to(device)
    criterionMSE = nn.MSELoss().to(device)
    
    # setup optimizer
    optimizer_g = optim.Adam(net_g.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
    optimizer_d = optim.Adam(net_d.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
    net_g_scheduler = get_scheduler(optimizer_g, opt)
    net_d_scheduler = get_scheduler(optimizer_d, opt)

    接着按批次读取数据,首先更新判别器,判别器的输入是图像对(真,真)(真,假)

    ######################
            # (1) Update D network
            ######################
    
            optimizer_d.zero_grad()
            
            # train with fake
            fake_ab = torch.cat((real_a, fake_b), 1)
            pred_fake = net_d.forward(fake_ab.detach())
            loss_d_fake = criterionGAN(pred_fake, False)
    
            # train with real
            real_ab = torch.cat((real_a, real_b), 1)
            pred_real = net_d.forward(real_ab)
            loss_d_real = criterionGAN(pred_real, True)
            
            # Combined D loss
            loss_d = (loss_d_fake + loss_d_real) * 0.5
    
            loss_d.backward()
           
            optimizer_d.step()

    然后更新生成器,生成器的损失由判别器产生的损失函数和真假图像之间的L1约束组成

    ######################
            # (2) Update G network
            ######################
    
            optimizer_g.zero_grad()
    
            # First, G(A) should fake the discriminator
            fake_ab = torch.cat((real_a, fake_b), 1)
            pred_fake = net_d.forward(fake_ab)
            loss_g_gan = criterionGAN(pred_fake, True)
    
            # Second, G(A) = B
            loss_g_l1 = criterionL1(fake_b, real_b) * opt.lamb
            
            loss_g = loss_g_gan + loss_g_l1
            
            loss_g.backward()
    
            optimizer_g.step()

    最后更新学习率

    update_learning_rate(net_g_scheduler, optimizer_g)
    update_learning_rate(net_d_scheduler, optimizer_d)

    比较核心的代码是网络构造,以及一些工具函数,放在后面写

  • 相关阅读:
    [转载]利用WCF共享ASP.NET session实现WCF服务端验证
    【转载】WCF REST 工作总结一
    [转载]分享WCF聊天程序WCFChat
    【转载】化零为整WCF(14) 事务(Transaction)
    poj2513
    poj2696
    poj2503
    poj2506
    poj2590
    实践案例丨云连接CC实现跨区域多VPC与线下IDC Server互联
  • 原文地址:https://www.cnblogs.com/wzyuan/p/11953646.html
Copyright © 2020-2023  润新知