• c++11新特性


    C++11

    Overview

    Many of these descriptions and examples come from various resources (see Acknowledgements section), summarized in my own words.

    C++11 includes the following new language features:

    C++11 includes the following new library features:

    C++11 Language Features

    Move semantics

    Moving an object means to transfer ownership of some resource it manages to another object.

    The first benefit of move semantics is performance optimization. When an object is about to reach the end of its lifetime, either because it's a temporary or by explicitly calling std::move, a move is often a cheaper way to transfer resources. For example, moving a std::vector is just copying some pointers and internal state over to the new vector -- copying would involve having to copy every single contained element in the vector, which is expensive and unnecessary if the old vector will soon be destroyed.

    Moves also make it possible for non-copyable types such as std::unique_ptrs (smart pointers) to guarantee at the language level that there is only ever one instance of a resource being managed at a time, while being able to transfer an instance between scopes.

    See the sections on: rvalue references, special member functions for move semantics, std::move, std::forward, forwarding references.

    Rvalue references

    C++11 introduces a new reference termed the rvalue reference. An rvalue reference to T, which is a non-template type parameter (such as int, or a user-defined type), is created with the syntax T&&. Rvalue references only bind to rvalues.

    Type deduction with lvalues and rvalues:

    int x = 0; // `x` is an lvalue of type `int`
    int& xl = x; // `xl` is an lvalue of type `int&`
    int&& xr = x; // compiler error -- `x` is an lvalue
    int&& xr2 = 0; // `xr2` is an lvalue of type `int&&` -- binds to the rvalue temporary, `0`
    

    See also: std::move, std::forward, forwarding references.

    Forwarding references

    Also known (unofficially) as universal references. A forwarding reference is created with the syntax T&& where T is a template type parameter, or using auto&&. This enables perfect forwarding: the ability to pass arguments while maintaining their value category (e.g. lvalues stay as lvalues, temporaries are forwarded as rvalues).

    Forwarding references allow a reference to bind to either an lvalue or rvalue depending on the type. Forwarding references follow the rules of reference collapsing:

    • T& & becomes T&
    • T& && becomes T&
    • T&& & becomes T&
    • T&& && becomes T&&

    auto type deduction with lvalues and rvalues:

    int x = 0; // `x` is an lvalue of type `int`
    auto&& al = x; // `al` is an lvalue of type `int&` -- binds to the lvalue, `x`
    auto&& ar = 0; // `ar` is an lvalue of type `int&&` -- binds to the rvalue temporary, `0`
    

    Template type parameter deduction with lvalues and rvalues:

    // Since C++14 or later:
    void f(auto&& t) {
      // ...
    }
    
    // Since C++11 or later:
    template <typename T>
    void f(T&& t) {
      // ...
    }
    
    int x = 0;
    f(0); // deduces as f(int&&)
    f(x); // deduces as f(int&)
    
    int& y = x;
    f(y); // deduces as f(int& &&) => f(int&)
    
    int&& z = 0; // NOTE: `z` is an lvalue with type `int&&`.
    f(z); // deduces as f(int&& &) => f(int&)
    f(std::move(z)); // deduces as f(int&& &&) => f(int&&)
    

    See also: std::move, std::forward, rvalue references.

    Variadic templates

    The ... syntax creates a parameter pack or expands one. A template parameter pack is a template parameter that accepts zero or more template arguments (non-types, types, or templates). A template with at least one parameter pack is called a variadic template.

    template <typename... T>
    struct arity {
      constexpr static int value = sizeof...(T);
    };
    static_assert(arity<>::value == 0);
    static_assert(arity<char, short, int>::value == 3);
    

    An interesting use for this is creating an initializer list from a parameter pack in order to iterate over variadic function arguments.

    template <typename First, typename... Args>
    auto sum(const First first, const Args... args) -> decltype(first) {
      const auto values = {first, args...};
      return std::accumulate(values.begin(), values.end(), First{0});
    }
    
    sum(1, 2, 3, 4, 5); // 15
    sum(1, 2, 3);       // 6               
    sum(1.5, 2.0, 3.7); // 7.2
    

    Initializer lists

    A lightweight array-like container of elements created using a "braced list" syntax. For example, { 1, 2, 3 } creates a sequences of integers, that has type std::initializer_list<int>. Useful as a replacement to passing a vector of objects to a function.

    int sum(const std::initializer_list<int>& list) {
      int total = 0;
      for (auto& e : list) {
        total += e;
      }
    
      return total;
    }
    
    auto list = {1, 2, 3};
    sum(list); // == 6
    sum({1, 2, 3}); // == 6
    sum({}); // == 0
    

    Static assertions

    Assertions that are evaluated at compile-time.

    constexpr int x = 0;
    constexpr int y = 1;
    static_assert(x == y, "x != y");
    

    auto

    auto-typed variables are deduced by the compiler according to the type of their initializer.

    auto a = 3.14; // double
    auto b = 1; // int
    auto& c = b; // int&
    auto d = { 0 }; // std::initializer_list<int>
    auto&& e = 1; // int&&
    auto&& f = b; // int&
    auto g = new auto(123); // int*
    const auto h = 1; // const int
    auto i = 1, j = 2, k = 3; // int, int, int
    auto l = 1, m = true, n = 1.61; // error -- `l` deduced to be int, `m` is bool
    auto o; // error -- `o` requires initializer
    

    Extremely useful for readability, especially for complicated types:

    std::vector<int> v = ...;
    std::vector<int>::const_iterator cit = v.cbegin();
    // vs.
    auto cit = v.cbegin();
    

    Functions can also deduce the return type using auto. In C++11, a return type must be specified either explicitly, or using decltype like so:

    template <typename X, typename Y>
    auto add(X x, Y y) -> decltype(x + y) {
      return x + y;
    }
    add(1, 2); // == 3
    add(1, 2.0); // == 3.0
    add(1.5, 1.5); // == 3.0
    

    The trailing return type in the above example is the declared type (see section on decltype) of the expression x + y. For example, if x is an integer and y is a double, decltype(x + y) is a double. Therefore, the above function will deduce the type depending on what type the expression x + y yields. Notice that the trailing return type has access to its parameters, and this when appropriate.

    Lambda expressions

    A lambda is an unnamed function object capable of capturing variables in scope. It features: a capture list; an optional set of parameters with an optional trailing return type; and a body. Examples of capture lists:

    • [] - captures nothing.
    • [=] - capture local objects (local variables, parameters) in scope by value.
    • [&] - capture local objects (local variables, parameters) in scope by reference.
    • [this] - capture this pointer by value.
    • [a, &b] - capture objects a by value, b by reference.
    int x = 1;
    
    auto getX = [=] { return x; };
    getX(); // == 1
    
    auto addX = [=](int y) { return x + y; };
    addX(1); // == 2
    
    auto getXRef = [&]() -> int& { return x; };
    getXRef(); // int& to `x`
    

    By default, value-captures cannot be modified inside the lambda because the compiler-generated method is marked as const. The mutable keyword allows modifying captured variables. The keyword is placed after the parameter-list (which must be present even if it is empty).

    int x = 1;
    
    auto f1 = [&x] { x = 2; }; // OK: x is a reference and modifies the original
    
    auto f2 = [x] { x = 2; }; // ERROR: the lambda can only perform const-operations on the captured value
    // vs.
    auto f3 = [x]() mutable { x = 2; }; // OK: the lambda can perform any operations on the captured value
    

    decltype

    decltype is an operator which returns the declared type of an expression passed to it. cv-qualifiers and references are maintained if they are part of the expression. Examples of decltype:

    int a = 1; // `a` is declared as type `int`
    decltype(a) b = a; // `decltype(a)` is `int`
    const int& c = a; // `c` is declared as type `const int&`
    decltype(c) d = a; // `decltype(c)` is `const int&`
    decltype(123) e = 123; // `decltype(123)` is `int`
    int&& f = 1; // `f` is declared as type `int&&`
    decltype(f) g = 1; // `decltype(f) is `int&&`
    decltype((a)) h = g; // `decltype((a))` is int&
    
    template <typename X, typename Y>
    auto add(X x, Y y) -> decltype(x + y) {
      return x + y;
    }
    add(1, 2.0); // `decltype(x + y)` => `decltype(3.0)` => `double`
    

    See also: decltype(auto) (C++14).

    Type aliases

    Semantically similar to using a typedef however, type aliases with using are easier to read and are compatible with templates.

    template <typename T>
    using Vec = std::vector<T>;
    Vec<int> v; // std::vector<int>
    
    using String = std::string;
    String s {"foo"};
    

    nullptr

    C++11 introduces a new null pointer type designed to replace C's NULL macro. nullptr itself is of type std::nullptr_t and can be implicitly converted into pointer types, and unlike NULL, not convertible to integral types except bool.

    void foo(int);
    void foo(char*);
    foo(NULL); // error -- ambiguous
    foo(nullptr); // calls foo(char*)
    

    Strongly-typed enums

    Type-safe enums that solve a variety of problems with C-style enums including: implicit conversions, inability to specify the underlying type, scope pollution.

    // Specifying underlying type as `unsigned int`
    enum class Color : unsigned int { Red = 0xff0000, Green = 0xff00, Blue = 0xff };
    // `Red`/`Green` in `Alert` don't conflict with `Color`
    enum class Alert : bool { Red, Green };
    Color c = Color::Red;
    

    Attributes

    Attributes provide a universal syntax over __attribute__(...), __declspec, etc.

    // `noreturn` attribute indicates `f` doesn't return.
    [[ noreturn ]] void f() {
      throw "error";
    }
    

    constexpr

    Constant expressions are expressions evaluated by the compiler at compile-time. Only non-complex computations can be carried out in a constant expression. Use the constexpr specifier to indicate the variable, function, etc. is a constant expression.

    constexpr int square(int x) {
      return x * x;
    }
    
    int square2(int x) {
      return x * x;
    }
    
    int a = square(2);  // mov DWORD PTR [rbp-4], 4
    
    int b = square2(2); // mov edi, 2
                        // call square2(int)
                        // mov DWORD PTR [rbp-8], eax
    

    constexpr values are those that the compiler can evaluate at compile-time:

    const int x = 123;
    constexpr const int& y = x; // error -- constexpr variable `y` must be initialized by a constant expression
    

    Constant expressions with classes:

    struct Complex {
      constexpr Complex(double r, double i) : re{r}, im{i} { }
      constexpr double real() { return re; }
      constexpr double imag() { return im; }
    
    private:
      double re;
      double im;
    };
    
    constexpr Complex I(0, 1);
    

    Delegating constructors

    Constructors can now call other constructors in the same class using an initializer list.

    struct Foo {
      int foo;
      Foo(int foo) : foo{foo} {}
      Foo() : Foo(0) {}
    };
    
    Foo foo;
    foo.foo; // == 0
    

    User-defined literals

    User-defined literals allow you to extend the language and add your own syntax. To create a literal, define a T operator "" X(...) { ... } function that returns a type T, with a name X. Note that the name of this function defines the name of the literal. Any literal names not starting with an underscore are reserved and won't be invoked. There are rules on what parameters a user-defined literal function should accept, according to what type the literal is called on.

    Converting Celsius to Fahrenheit:

    // `unsigned long long` parameter required for integer literal.
    long long operator "" _celsius(unsigned long long tempCelsius) {
      return std::llround(tempCelsius * 1.8 + 32);
    }
    24_celsius; // == 75
    

    String to integer conversion:

    // `const char*` and `std::size_t` required as parameters.
    int operator "" _int(const char* str, std::size_t) {
      return std::stoi(str);
    }
    
    "123"_int; // == 123, with type `int`
    

    Explicit virtual overrides

    Specifies that a virtual function overrides another virtual function. If the virtual function does not override a parent's virtual function, throws a compiler error.

    struct A {
      virtual void foo();
      void bar();
    };
    
    struct B : A {
      void foo() override; // correct -- B::foo overrides A::foo
      void bar() override; // error -- A::bar is not virtual
      void baz() override; // error -- B::baz does not override A::baz
    };
    

    Final specifier

    Specifies that a virtual function cannot be overridden in a derived class or that a class cannot be inherited from.

    struct A {
      virtual void foo();
    };
    
    struct B : A {
      virtual void foo() final;
    };
    
    struct C : B {
      virtual void foo(); // error -- declaration of 'foo' overrides a 'final' function
    };
    

    Class cannot be inherited from.

    struct A final {};
    struct B : A {}; // error -- base 'A' is marked 'final'
    

    Default functions

    A more elegant, efficient way to provide a default implementation of a function, such as a constructor.

    struct A {
      A() = default;
      A(int x) : x{x} {}
      int x {1};
    };
    A a; // a.x == 1
    A a2 {123}; // a.x == 123
    

    With inheritance:

    struct B {
      B() : x{1} {}
      int x;
    };
    
    struct C : B {
      // Calls B::B
      C() = default;
    };
    
    C c; // c.x == 1
    

    Deleted functions

    A more elegant, efficient way to provide a deleted implementation of a function. Useful for preventing copies on objects.

    class A {
      int x;
    
    public:
      A(int x) : x{x} {};
      A(const A&) = delete;
      A& operator=(const A&) = delete;
    };
    
    A x {123};
    A y = x; // error -- call to deleted copy constructor
    y = x; // error -- operator= deleted
    

    Range-based for loops

    Syntactic sugar for iterating over a container's elements.

    std::array<int, 5> a {1, 2, 3, 4, 5};
    for (int& x : a) x *= 2;
    // a == { 2, 4, 6, 8, 10 }
    

    Note the difference when using int as opposed to int&:

    std::array<int, 5> a {1, 2, 3, 4, 5};
    for (int x : a) x *= 2;
    // a == { 1, 2, 3, 4, 5 }
    

    Special member functions for move semantics

    The copy constructor and copy assignment operator are called when copies are made, and with C++11's introduction of move semantics, there is now a move constructor and move assignment operator for moves.

    struct A {
      std::string s;
      A() : s{"test"} {}
      A(const A& o) : s{o.s} {}
      A(A&& o) : s{std::move(o.s)} {}
      A& operator=(A&& o) {
       s = std::move(o.s);
       return *this;
      }
    };
    
    A f(A a) {
      return a;
    }
    
    A a1 = f(A{}); // move-constructed from rvalue temporary
    A a2 = std::move(a1); // move-constructed using std::move
    A a3 = A{};
    a2 = std::move(a3); // move-assignment using std::move
    a1 = f(A{}); // move-assignment from rvalue temporary
    

    Converting constructors

    Converting constructors will convert values of braced list syntax into constructor arguments.

    struct A {
      A(int) {}
      A(int, int) {}
      A(int, int, int) {}
    };
    
    A a {0, 0}; // calls A::A(int, int)
    A b(0, 0); // calls A::A(int, int)
    A c = {0, 0}; // calls A::A(int, int)
    A d {0, 0, 0}; // calls A::A(int, int, int)
    

    Note that the braced list syntax does not allow narrowing:

    struct A {
      A(int) {}
    };
    
    A a(1.1); // OK
    A b {1.1}; // Error narrowing conversion from double to int
    

    Note that if a constructor accepts a std::initializer_list, it will be called instead:

    struct A {
      A(int) {}
      A(int, int) {}
      A(int, int, int) {}
      A(std::initializer_list<int>) {}
    };
    
    A a {0, 0}; // calls A::A(std::initializer_list<int>)
    A b(0, 0); // calls A::A(int, int)
    A c = {0, 0}; // calls A::A(std::initializer_list<int>)
    A d {0, 0, 0}; // calls A::A(std::initializer_list<int>)
    

    Explicit conversion functions

    Conversion functions can now be made explicit using the explicit specifier.

    struct A {
      operator bool() const { return true; }
    };
    
    struct B {
      explicit operator bool() const { return true; }
    };
    
    A a;
    if (a); // OK calls A::operator bool()
    bool ba = a; // OK copy-initialization selects A::operator bool()
    
    B b;
    if (b); // OK calls B::operator bool()
    bool bb = b; // error copy-initialization does not consider B::operator bool()
    

    Inline namespaces

    All members of an inline namespace are treated as if they were part of its parent namespace, allowing specialization of functions and easing the process of versioning. This is a transitive property, if A contains B, which in turn contains C and both B and C are inline namespaces, C's members can be used as if they were on A.

    namespace Program {
      namespace Version1 {
        int getVersion() { return 1; }
        bool isFirstVersion() { return true; }
      }
      inline namespace Version2 {
        int getVersion() { return 2; }
      }
    }
    
    int version {Program::getVersion()};              // Uses getVersion() from Version2
    int oldVersion {Program::Version1::getVersion()}; // Uses getVersion() from Version1
    bool firstVersion {Program::isFirstVersion()};    // Does not compile when Version2 is added
    

    Non-static data member initializers

    Allows non-static data members to be initialized where they are declared, potentially cleaning up constructors of default initializations.

    // Default initialization prior to C++11
    class Human {
        Human() : age{0} {}
      private:
        unsigned age;
    };
    // Default initialization on C++11
    class Human {
      private:
        unsigned age {0};
    };
    

    Right angle brackets

    C++11 is now able to infer when a series of right angle brackets is used as an operator or as a closing statement of typedef, without having to add whitespace.

    typedef std::map<int, std::map <int, std::map <int, int> > > cpp98LongTypedef;
    typedef std::map<int, std::map <int, std::map <int, int>>>   cpp11LongTypedef;
    

    Ref-qualified member functions

    Member functions can now be qualified depending on whether *this is an lvalue or rvalue reference.

    struct Bar {
      // ...
    };
    
    struct Foo {
      Bar getBar() & { return bar; }
      Bar getBar() const& { return bar; }
      Bar getBar() && { return std::move(bar); }
    private:
      Bar bar;
    };
    
    Foo foo{};
    Bar bar = foo.getBar(); // calls `Bar getBar() &`
    
    const Foo foo2{};
    Bar bar2 = foo2.getBar(); // calls `Bar Foo::getBar() const&`
    
    Foo{}.getBar(); // calls `Bar Foo::getBar() &&`
    std::move(foo).getBar(); // calls `Bar Foo::getBar() &&`
    
    std::move(foo2).getBar(); // calls `Bar Foo::getBar() const&&`
    

    Trailing return types

    C++11 allows functions and lambdas an alternative syntax for specifying their return types.

    int f() {
      return 123;
    }
    // vs.
    auto f() -> int {
      return 123;
    }
    
    auto g = []() -> int {
      return 123;
    };
    

    This feature is especially useful when certain return types cannot be resolved:

    // NOTE: This does not compile!
    template <typename T, typename U>
    decltype(a + b) add(T a, U b) {
        return a + b;
    }
    
    // Trailing return types allows this:
    template <typename T, typename U>
    auto add(T a, U b) -> decltype(a + b) {
        return a + b;
    }
    

    In C++14, decltype(auto) can be used instead.

    Noexcept specifier

    The noexcept specifier specifies whether a function could throw exceptions. It is an improved version of throw().

    void func1() noexcept;        // does not throw
    void func2() noexcept(true);  // does not throw
    void func3() throw();         // does not throw
    
    void func4() noexcept(false); // may throw
    

    Non-throwing functions are permitted to call potentially-throwing functions. Whenever an exception is thrown and the search for a handler encounters the outermost block of a non-throwing function, the function std::terminate is called.

    extern void f();  // potentially-throwing
    void g() noexcept {
        f();          // valid, even if f throws
        throw 42;     // valid, effectively a call to std::terminate
    }
    

    C++11 Library Features

    std::move

    std::move indicates that the object passed to it may have its resources transferred. Using objects that have been moved from should be used with care, as they can be left in an unspecified state (see: What can I do with a moved-from object?).

    A definition of std::move (performing a move is nothing more than casting to an rvalue reference):

    template <typename T>
    typename remove_reference<T>::type&& move(T&& arg) {
      return static_cast<typename remove_reference<T>::type&&>(arg);
    }
    

    Transferring std::unique_ptrs:

    std::unique_ptr<int> p1 {new int{0}};  // in practice, use std::make_unique
    std::unique_ptr<int> p2 = p1; // error -- cannot copy unique pointers
    std::unique_ptr<int> p3 = std::move(p1); // move `p1` into `p3`
                                             // now unsafe to dereference object held by `p1`
    

    std::forward

    Returns the arguments passed to it while maintaining their value category and cv-qualifiers. Useful for generic code and factories. Used in conjunction with forwarding references.

    A definition of std::forward:

    template <typename T>
    T&& forward(typename remove_reference<T>::type& arg) {
      return static_cast<T&&>(arg);
    }
    

    An example of a function wrapper which just forwards other A objects to a new A object's copy or move constructor:

    struct A {
      A() = default;
      A(const A& o) { std::cout << "copied" << std::endl; }
      A(A&& o) { std::cout << "moved" << std::endl; }
    };
    
    template <typename T>
    A wrapper(T&& arg) {
      return A{std::forward<T>(arg)};
    }
    
    wrapper(A{}); // moved
    A a;
    wrapper(a); // copied
    wrapper(std::move(a)); // moved
    

    See also: forwarding references, rvalue references.

    std::thread

    The std::thread library provides a standard way to control threads, such as spawning and killing them. In the example below, multiple threads are spawned to do different calculations and then the program waits for all of them to finish.

    void foo(bool clause) { /* do something... */ }
    
    std::vector<std::thread> threadsVector;
    threadsVector.emplace_back([]() {
      // Lambda function that will be invoked    
    });
    threadsVector.emplace_back(foo, true);  // thread will run foo(true)
    for (auto& thread : threadsVector) {
      thread.join(); // Wait for threads to finish
    }
    

    std::to_string

    Converts a numeric argument to a std::string.

    std::to_string(1.2); // == "1.2"
    std::to_string(123); // == "123"
    

    Type traits

    Type traits defines a compile-time template-based interface to query or modify the properties of types.

    static_assert(std::is_integral<int>::value);
    static_assert(std::is_same<int, int>::value);
    static_assert(std::is_same<std::conditional<true, int, double>::type, int>::value);
    

    Smart pointers

    C++11 introduces new smart pointers: std::unique_ptr, std::shared_ptr, std::weak_ptr. std::auto_ptr now becomes deprecated and then eventually removed in C++17.

    std::unique_ptr is a non-copyable, movable pointer that manages its own heap-allocated memory. Note: Prefer using the std::make_X helper functions as opposed to using constructors. See the sections for std::make_unique and std::make_shared.

    std::unique_ptr<Foo> p1 { new Foo{} };  // `p1` owns `Foo`
    if (p1) {
      p1->bar();
    }
    
    {
      std::unique_ptr<Foo> p2 {std::move(p1)};  // Now `p2` owns `Foo`
      f(*p2);
    
      p1 = std::move(p2);  // Ownership returns to `p1` -- `p2` gets destroyed
    }
    
    if (p1) {
      p1->bar();
    }
    // `Foo` instance is destroyed when `p1` goes out of scope
    

    A std::shared_ptr is a smart pointer that manages a resource that is shared across multiple owners. A shared pointer holds a control block which has a few components such as the managed object and a reference counter. All control block access is thread-safe, however, manipulating the managed object itself is not thread-safe.

    void foo(std::shared_ptr<T> t) {
      // Do something with `t`...
    }
    
    void bar(std::shared_ptr<T> t) {
      // Do something with `t`...
    }
    
    void baz(std::shared_ptr<T> t) {
      // Do something with `t`...
    }
    
    std::shared_ptr<T> p1 {new T{}};
    // Perhaps these take place in another threads?
    foo(p1);
    bar(p1);
    baz(p1);
    

    std::chrono

    The chrono library contains a set of utility functions and types that deal with durations, clocks, and time points. One use case of this library is benchmarking code:

    std::chrono::time_point<std::chrono::steady_clock> start, end;
    start = std::chrono::steady_clock::now();
    // Some computations...
    end = std::chrono::steady_clock::now();
    
    std::chrono::duration<double> elapsed_seconds = end - start;
    double t = elapsed_seconds.count(); // t number of seconds, represented as a `double`
    

    Tuples

    Tuples are a fixed-size collection of heterogeneous values. Access the elements of a std::tuple by unpacking using std::tie, or using std::get.

    // `playerProfile` has type `std::tuple<int, const char*, const char*>`.
    auto playerProfile = std::make_tuple(51, "Frans Nielsen", "NYI");
    std::get<0>(playerProfile); // 51
    std::get<1>(playerProfile); // "Frans Nielsen"
    std::get<2>(playerProfile); // "NYI"
    

    std::tie

    Creates a tuple of lvalue references. Useful for unpacking std::pair and std::tuple objects. Use std::ignore as a placeholder for ignored values. In C++17, structured bindings should be used instead.

    // With tuples...
    std::string playerName;
    std::tie(std::ignore, playerName, std::ignore) = std::make_tuple(91, "John Tavares", "NYI");
    
    // With pairs...
    std::string yes, no;
    std::tie(yes, no) = std::make_pair("yes", "no");
    

    std::array

    std::array is a container built on top of a C-style array. Supports common container operations such as sorting.

    std::array<int, 3> a = {2, 1, 3};
    std::sort(a.begin(), a.end()); // a == { 1, 2, 3 }
    for (int& x : a) x *= 2; // a == { 2, 4, 6 }
    

    Unordered containers

    These containers maintain average constant-time complexity for search, insert, and remove operations. In order to achieve constant-time complexity, sacrifices order for speed by hashing elements into buckets. There are four unordered containers:

    • unordered_set
    • unordered_multiset
    • unordered_map
    • unordered_multimap

    std::make_shared

    std::make_shared is the recommended way to create instances of std::shared_ptrs due to the following reasons:

    • Avoid having to use the new operator.
    • Prevents code repetition when specifying the underlying type the pointer shall hold.
    • It provides exception-safety. Suppose we were calling a function foo like so:
    foo(std::shared_ptr<T>{new T{}}, function_that_throws(), std::shared_ptr<T>{new T{}});
    

    The compiler is free to call new T{}, then function_that_throws(), and so on... Since we have allocated data on the heap in the first construction of a T, we have introduced a leak here. With std::make_shared, we are given exception-safety:

    foo(std::make_shared<T>(), function_that_throws(), std::make_shared<T>());
    
    • Prevents having to do two allocations. When calling std::shared_ptr{ new T{} }, we have to allocate memory for T, then in the shared pointer we have to allocate memory for the control block within the pointer.

    See the section on smart pointers for more information on std::unique_ptr and std::shared_ptr.

    std::ref

    std::ref(val) is used to create object of type std::reference_wrapper that holds reference of val. Used in cases when usual reference passing using & does not compile or & is dropped due to type deduction. std::cref is similar but created reference wrapper holds a const reference to val.

    // create a container to store reference of objects.
    auto val = 99;
    auto _ref = std::ref(val);
    _ref++;
    auto _cref = std::cref(val);
    //_cref++; does not compile
    std::vector<std::reference_wrapper<int>>vec; // vector<int&>vec does not compile
    vec.push_back(_ref); // vec.push_back(&i) does not compile
    cout << val << endl; // prints 100
    cout << vec[0] << endl; // prints 100
    cout << _cref; // prints 100
    

    Memory model

    C++11 introduces a memory model for C++, which means library support for threading and atomic operations. Some of these operations include (but aren't limited to) atomic loads/stores, compare-and-swap, atomic flags, promises, futures, locks, and condition variables.

    See the sections on: std::thread

    std::async

    std::async runs the given function either asynchronously or lazily-evaluated, then returns a std::future which holds the result of that function call.

    The first parameter is the policy which can be:

    1. std::launch::async | std::launch::deferred It is up to the implementation whether to perform asynchronous execution or lazy evaluation.
    2. std::launch::async Run the callable object on a new thread.
    3. std::launch::deferred Perform lazy evaluation on the current thread.
    int foo() {
      /* Do something here, then return the result. */
      return 1000;
    }
    
    auto handle = std::async(std::launch::async, foo);  // create an async task
    auto result = handle.get();  // wait for the result
    

    std::begin/end

    std::begin and std::end free functions were added to return begin and end iterators of a container generically. These functions also work with raw arrays which do not have begin and end member functions.

    template <typename T>
    int CountTwos(const T& container) {
      return std::count_if(std::begin(container), std::end(container), [](int item) {
        return item == 2;
      });
    }
    
    std::vector<int> vec = {2, 2, 43, 435, 4543, 534};
    int arr[8] = {2, 43, 45, 435, 32, 32, 32, 32};
    auto a = CountTwos(vec); // 2
    auto b = CountTwos(arr);  // 1
    

    Acknowledgements

    Author

    Anthony Calandra

    Content Contributors

    See: https://github.com/AnthonyCalandra/modern-cpp-features/graphs/contributors

    License

    MIT

  • 相关阅读:
    python网上开发执行环境
    bt5全称是Back Track five,是继BT3,BT4之后的最新版,这是一个linux环境的便携系统,可以放到U盘或者硬盘中启动,对本身硬盘没有影响,无需在本地安装。
    ubuntu安装mysql的步骤和配置总结
    Django 安装MySQLdb模块
    OpenCV3编程入门笔记(一)
    论文笔记---Deblurring Shaken and Partially Saturated Images
    win7 64位操作系统 电脑桌面出现this computer is being attacked的窗口
    论文笔记(一)---翻译 Rich feature hierarchies for accurate object detection and semantic segmentation
    OpenCV3计算机视觉Python语言实现笔记(五)
    OpenCV3计算机视觉Python语言实现笔记(四)
  • 原文地址:https://www.cnblogs.com/wzxNote/p/13031334.html
Copyright © 2020-2023  润新知