• 利用堆实现堆排序&优先队列


    数据结构之(二叉)堆一文在末尾提到“利用堆能够实现:堆排序、优先队列。”。本文代码实现之。

    1、堆排序

    如果要实现非递减排序。则须要用要大顶堆。

    此处设计到三个大顶堆的操作:(1)自顶向下调整操作:MaxHeapify(相应堆的SiftDown操作)、(2)利用数组建立大顶堆:BuildMaxHeap、(3)不断交换堆顶元素(堆的最大元素)和堆的末尾元素,实现非递减排序。

    以下是详细的实现代码:

    //已知L[i,...,n)除L[i]之外均满足大顶堆的定义,本函数向下调整L[i]
    //使得在具有n个结点的堆中,以i为下标的根节点的子树又一次遵循最大堆的性质
    //n为节点总数,从0開始计算。i节点的子节点为 2*i+1, 2*i+2
    void MaxHeapify(int L[], int i, int n)
    {
    	int j, tmp;
    	j = 2 * i + 1;	//父节点i的左孩子结点
    	tmp = L[i];
    	while (j < n)
    	{
    		if (j + 1 < n && L[j + 1] > L[j])//找左右孩子中最大的
    			j++;
    		if (L[j] <= tmp)   //	父结点tmp=L[i]比孩子结点L[j]大
    			break;
    		L[i] = L[j];	//把较大的子结点往上移动,替换它的父结点
    		i = j;
    		j = 2 * i + 1;
    	}
    	L[i] = tmp;
    }

    //子数组L[n/2+1,..,n)中的元素都是树的叶子结点,每一个叶节点都能够看成仅仅包括一个元素的堆。
    //该函数对树中的其余结点都调用一次MaxHeapify()
    void BuildMaxHeap(int L[], int n)
    {
    	for (int i = n / 2 - 1; i >= 0; i--) //注意是从最后一个结点(n-1)的父节点((n-1)-1)/2 = (n-2)/2 = n/2-1 開始
    		MaxHeapify(L, i, n);
    }

    void MaxHeapSort(int L[], int n)
    {
    	BuildMaxHeap(L, n); //先建立大顶堆
    	for (int i = n - 1 ; i > 0; i--)   //从最后一个元素起
    	{
    		//L[0]永远是大顶堆堆L[0,i]的堆顶元素,最大值
    		std::swap(L[0], L[i]);	  
    
    		//将L[0]和最末尾元素交换后:最大的元素如今位于数组末尾,堆的结点个数减一
    		//但L[0..i)由于改动了L[0]可能会破坏堆的性质,因此须要调整L[0,...,i)使之依旧满足最大堆:
    		//已知L[0,...,i)除L[0]之外均满足大顶堆的定义,本函数向下调整L[0]
    		//使得在具有i个结点的堆中,以0为下标的根节点的子树又一次遵循最大堆的性质
    		MaxHeapify(L, 0, i);
    	}
    }

    2、利用堆实现优先队列

    优先队列分为最大优先队列和最小优先队列,分别借助于大顶堆和小顶堆。

    优先队列有以下基本操作:(1)提取队列中的最大(小)元素;(2)提取队列中的最大(小)元素并从队列中删除;(3)将队列中元素为x的keyword降低(增大)到k,这里如果k的值不大(小)于x的原关键值

    其它的还包含如插入、删除操作。这些操作大多调用SiftDown、SiftUp操作实现。以下是详细实现代码:

    (1)最大优先队列

    #pragma once
    #include "maxHeap.h"
    
    template<class T>
    class MaxPriQueue : public MaxHeap<T>
    {
    public:
    	MaxPriQueue(const int nmax = 20) : MaxHeap(nmax) {}
    	~MaxPriQueue(){}
    
    	T maximum() const;	//返回具有最大键值的元素
    	T ExtractMax();	//去掉并返回最大键值的元素
    	void InCreaseKey(const T &x, const T &k);	//将元素x的keyword添加到k,这里如果k的值不小于x的原关键值
    	virtual void Insert(const T &key);//算法导论第三版p92的方法;也能够调用继承来的Insert方法
    };
    
    template<class T>
    T MaxPriQueue<T>::maximum()const
    {
    	if (size > 0)
    		return arr[0];
    	return T(0);
    }
    
    template<class T>
    T MaxPriQueue<T>::ExtractMax()
    {
    	if (size  < 0)
    		return T(0);
    	T max  = arr[0];
    	arr[0] = arr[--size];//最末尾的值补上去,同一时候size减1
    	SiftDown(0);	  //向下调整
    	return max;
    }
    
    template<class T>
    void MaxPriQueue<T>::InCreaseKey(const T &x, const T &k)
    {
    	if (k < x)		//如果k的值不小于x的原关键值
    		return;
    	int pos = Search(x);
    	if (pos == -1)
    		return;
    	arr[pos] = k;
    	SiftUp(pos);	//向上调整
    }
    template<class T>
    void MaxPriQueue<T>::Insert(const T &key)
    {
    	arr[size++] =  -INFINITY;    //首先添加一个-∞的叶节点
    	InCreaseKey(-INFINITY, key); //将该叶节点的值增大至key
    }

    (2)最小优先队列

    #pragma once
    #include "minHeap.h"
    
    template<class T>
    class MinPriQueue : public MinHeap<T>
    {
    public:
    	MinPriQueue(const int nmax = 20) : MinHeap(nmax) {}
    	~MinPriQueue(){}
    
    	T minimum() const;	//返回具有最小键值的元素
    	T ExtractMin();	//去掉并返回最小键值的元素
    	void DeCreaseKey(const T &x, const T &k);	//将元素x的keyword降低到k,这里如果k的值不大于x的原关键值
    	virtual void Insert(const T &key);//算法导论第三版p92的方法;也能够调用继承来的Insert方法
    };
    
    template<class T>
    T MinPriQueue<T>::minimum()const
    {
    	if (size > 0)
    		return arr[0];
    	return T(0);
    }
    
    template<class T>
    T MinPriQueue<T>::ExtractMin()
    {
    	if (size  < 0)
    		return T(0);
    	T min  = arr[0];
    	arr[0] = arr[--size];//最末尾的值补上去,同一时候size减1
    	SiftDown(0);	  //向下调整
    	return min;
    }
    
    template<class T>
    void MinPriQueue<T>::DeCreaseKey(const T &x, const T &k)
    {
    	if (k >= x)		//如果k的值不大于x的原关键值
    		return;
    	int pos = Search(x);
    	if (pos == -1)
    		return;
    	arr[pos] = k;
    	SiftUp(pos);	//向上调整
    }
    template<class T>
    void MinPriQueue<T>::Insert(const T &key)
    {
    	arr[size++] =  INFINITY;    //首先添加一个∞的叶节点
    	DeCreaseKey(INFINITY, key); //将该叶节点的值降低至key
    }


    測试代码:

    #include "max_priqueue.h"
    #include "min_priqueue.h"
    #include <iostream>
    using namespace std;
    
    int main()
    {
    	int a[12] = {15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1};
    	int b[12]; memcpy(b, a, sizeof(a));
    
    	cout << "原始数组元素: ";
    	for (int i = 0; i < 12; i++)
    		cout << a[i]  << " ";
    	cout << endl;
    
    	MaxPriQueue<int> maxpriqueue(20);
    	MinPriQueue<int> minpriqueue(20);
    	for (int i = 0; i < 12; i++)
    		maxpriqueue.Insert(a[i]);	 //向上调整
    
    	cout << "
    最大优先队列元素为: "; maxpriqueue.Print();
    	cout << "max = " << maxpriqueue.maximum() << endl;
    	cout << "删掉最大元素 " << maxpriqueue.ExtractMax() << "后 :" ; maxpriqueue.Print();
    	cout << "将元素 12 添加到 23 后:"; maxpriqueue.InCreaseKey(12, 23);maxpriqueue.Print();
    	cout << "删掉元素4后: "; maxpriqueue.Delete(4); maxpriqueue.Print();
    
    
    	for (int i = 0; i < 12; i++)
    		minpriqueue.Insert(a[i]);	 //向上调整
    	cout << "
    最小优先队列元素为: "; minpriqueue.Print();
    	cout << "min = " << minpriqueue.minimum() << endl;
    	cout << "删掉最小元素 " << minpriqueue.ExtractMin() << "后 :" ; minpriqueue.Print();
    	cout << "将元素 12 减小到 3 后:"; minpriqueue.DeCreaseKey(12, 23);minpriqueue.Print();
    	cout << "删掉元素4后: "; minpriqueue.Delete(4); maxpriqueue.Print();
    
    	getchar();
    	return 0;
    }

    执行截图:



    ps:代码中的继承的类的代码能够在 数据结构之(二叉)堆 中查看;

            向量排序算法:不断将无序数组中的元素插入最小优先队列中,构建完成后。再调用n次ExtractMin()操作。也能够实现非递减排序,可是要花费O(n)的空间复杂度。(编程珠玑:p148)

    3、STL中的堆(heap)

    STL中与堆相关的4个函数——建立堆make_heap()、在堆中加入数据push_heap()、在堆中删除数据pop_heap()和堆排序sort_heap()。

    头文件 #include <algorithm>

    以下的_First与_Last为能够随机訪问的迭代器(指针),_Comp为比較函数(仿函数)。其规则——假设函数的第一个參数小于第二个參数应返回true,否则返回false。

    (1)建立堆

    make_heap(_First, _Last, _Comp)

    默认是建立大顶堆的(less<T>())。对int类型。能够在第三个參数传入greater<int>()得到最小堆。最小堆的时候的push_heap()、pop_heap()、sort_heap()均要显示地将greater<int>()作为第三个參数传入。

    (2)在堆中加入数据

    push_heap (_First, _Last)

    要先在容器中加入数据:push_back(x)操作;再调用push_heap ():将最末尾新加入的元素向上调整使之整个容器数组符合堆性质。



    (3)在堆中删除数据

    pop_heap(_First, _Last)

    要先调用pop_heap()操作:将堆顶元素和堆的最末尾元素交换,堆大小减去1。并向下调整堆顶元素使得新的堆满足最大堆的性质;再在容器中删除数据:pop_back()操作。每次删除的是堆顶的元素

    (4)堆排序

    sort_heap(_First, _Last)

    排序之后就不再是一个合法的heap了。



    STL中heap使用演示样例代码:

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <functional>	 //for function object like greater<int>()
    #include <ctime>
    using namespace std;
    
    void print(vector<int> &vet)
    {
    	for (vector<int>::const_iterator iter = vet.begin(); iter != vet.end(); iter++)
    		cout << *iter << " ";
    	cout << endl;
    }
    int main()
    {
    	const int MAXN = 10;
    	int a[MAXN];
    	srand((unsigned)time(0));
    	for (int i = 0; i < MAXN; ++i)
    		a[i] = rand() % (MAXN * 2);
    
    	//动态申请vector,并对vector建堆
    	vector<int> *pvet = new vector<int>(20);
    	pvet->assign(a, a + MAXN);
    
    	cout << "
    无序数组:		";print(*pvet);
    
    	//默认建大顶堆
    	make_heap(pvet->begin(), pvet->end());
    	cout << "大顶堆:			";print(*pvet);
    
    	//加入数据
    	pvet->push_back(25);	 //先在容器中加入
    	cout << "
    容器push_back(25)后:	";print(*pvet);
    	push_heap(pvet->begin(), pvet->end());	//再调用push_heap()
    	cout << "堆push_heap()操作后:	";print(*pvet);
    
    	//删除数据
    	pop_heap(pvet->begin(), pvet->end());  // 先调用pop_heap()
    	cout << "
    堆pop_heap()操作后:	";print(*pvet);
    	pvet->pop_back();		   //再在容器中删除
    	cout << "容器pop_back()后:	";print(*pvet);
    	pop_heap(pvet->begin(), pvet->end());
    	cout << "
    堆pop_heap()操作后:	";print(*pvet);
    	pvet->pop_back();
    	cout << "容器pop_back()后:	";print(*pvet);
    
    	//堆排序
    	sort_heap(pvet->begin(), pvet->end());
    	cout << "
    堆排序结果:		";print(*pvet);
    
    	delete pvet;
    	return 0;
    }

    演示样例截图:



    4、利用堆求解top_k

    编写算法。从10亿个浮点数其中,选出其中最大的10000个。

    //典型的Top K问题,用堆是最典型的思路。

    //建10000个数的小顶堆,然后将10亿个数依次读取,大于堆顶,则替换堆顶。做一次堆调整。 //结束之后,小顶堆中存放的数即为所求。

    代码例如以下(为了方便,这里直接使用了STL容器): void top_k() { const int nmax = 1000000000; //10亿个数 vector<float>bigs(10000, 0); //init vector array srand((unsigned)time(0)); for (vector<float>::iterator iter = bigs.begin(); iter != bigs.end(); iter++) *iter = (float)rand() / 7; //random values; //cout << bigs.size() << endl; make_heap(bigs.begin(), bigs.end(), greater<float>());//little heap, the first one is the smallest one! float f; for (int i = 0; i < nmax; i++) { srand((unsigned)time(0)); f = (float)rand() / 7; if (f > bigs.front())//replace the first element?

    { //set the smallest one to the end! pop_heap(bigs.begin(), bigs.end(), greater<float>()); //remove the smallest one bigs.pop_back(); //add to the last one bigs.push_back(f); //make the heap again, the first element is still the smallest one push_heap(bigs.begin(), bigs.end(), greater<float>()); } } //sort by ascent sort_heap(bigs.begin(), bigs.end(), greater<float>()); }

    參考资料:数据结构p297-p283、算法导论第三版:p90-p92、编程珠玑:p145-p148

                        STL系列之四 heap 堆


  • 相关阅读:
    sqloraclesharePool 天高地厚
    aspx工作原理 天高地厚
    【转载】VB ActiveX插件开发打包部署一条龙服务 天高地厚
    【转载】为高负载网络优化Nginx和Node.js 天高地厚
    几个重要的基本概念 天高地厚
    Delphi中取得汉字的首字母
    C#中将字符串转换为MD5
    使用RDLC报表(一)
    在Delphi中的TreeView中保存多个数据
    C#中将图片文件存至数组
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/7399595.html
Copyright © 2020-2023  润新知